Dễ dàng có ngay $(\dfrac{1+i}{1-i})^{33} = (\dfrac{(1+i)^2}{1-i^2})^{33}=(\dfrac{2i}{2})^{33}=i^{33}=i .(i^2)^{16}=i$
$(1+i)^{10} =((1+i)^2)^5 =(1+2i+i^2)^5=(2i)^5=32i^5 =32i$
$(2+3i)(2-3i)=4-9i^2 = 4+9=13$
$\dfrac{1}{i}=-i$
Vậy $z=i+32i+13-i=13+32i\Rightarrow |z| =\sqrt{13^2 +32^2}=...$