d. $\mathop {\lim }\limits_{x \to 0}\frac{(\sqrt{2x+1}-1)-(\sqrt[2]{x^2+1}-1)}{sinx}$
=$\mathop {\lim }\limits_{x \to 0}\frac{\sqrt{2x+1}-1}{sinx}-\mathop {\lim }\limits_{x \to 0}\frac{\sqrt[2]{x^2+1}-1}{sinx}$
=$\mathop {\lim }\limits_{x \to 0}\frac{2x}{sinx(\sqrt{2x+1}+1)}-\mathop {\lim }\limits_{x \to 0}\frac{x.x}{sinx[(\sqrt[3]{x^2+1})^2+\sqrt[3]{x^2+1}+1)]}$
=$\mathop {\lim }\limits_{x \to 0}\frac{2}{\sqrt{2x+1}+1}-\mathop {\lim }\limits_{x \to 0}\frac{x}{(\sqrt[3]{x^2+1})^2+\sqrt[2]{x^2+1}+1}$
=$1$