3
phiếu
2đáp án
2K lượt xem

Ban giup minh

Cho x,y,z$\geq$0 thoa man: $x^{2}+y^{2}+z^{2}$=3Tim max cua P= $xy+yz+zx+\frac{5}{x+y+z}$
3
phiếu
1đáp án
1K lượt xem

Bất đẳng thức.

Cho $a,\,b,\,c>0.$ Chứng minh rằng: $$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{4c^2}{a}\geq a+3b$$
1
phiếu
1đáp án
1K lượt xem

Can gap

Cho a,b>0.CMR:$\frac{a^{2}}{b}+\frac{b^{2}}{a}+7(a+b)\geq8\sqrt{2(a^{2}+b^{2})}$
1
phiếu
2đáp án
1K lượt xem

Can gap

Cho cac so thuc a,b,c thoa man:$x^{2}+y^{2}+z^{2}\leq8$Tim GTNN cua: xy+yz+2zx
1
phiếu
1đáp án
1K lượt xem

Bài 6

Cho x,y,z>0. Tìm GTLN của biểu thức:$A= \frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}$
0
phiếu
1đáp án
1K lượt xem

Bài 5

Cho $a,b,c>0$ và $a+b+c=3$. CMR:1) $\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\geqslant 1$ 2)...
0
phiếu
1đáp án
1K lượt xem

Bài 4

Cho a,b,c,d>0. CMR:1) $\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\geqslant \frac{a+b+c+d}{3}$
1
phiếu
1đáp án
1K lượt xem

Bài 3

Cho $a,b,c,d>0$ và $a+b+c+d=4$ . CMR:$\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\geqslant 2$
2
phiếu
2đáp án
2K lượt xem

Bất Đẳng Thức (CM có đk đề bài)

Cho $x, y, z > 0$ thỏa mãn $xy+yz+xz =1$ CMR: $\frac{x}{\sqrt{x^{2}+1}} + \frac{y}{\sqrt{y^{2}+1}} + \frac{z}{\sqrt{z^{2}+1}}\leq \frac{3}{2} $
2
phiếu
1đáp án
1K lượt xem

tìm GTNN

Cho $x ; y ; z$ là các số thực không âm thỏa mãn: $x +y +z = \dfrac{3}{2} $Tìm GTNN của $A=\cos (x^{2} + y^{2} + z^{2})$.
1
phiếu
1đáp án
1K lượt xem

Ban giup minh

Cho a,b>0 thoa man: $a^{3}+b^{3}=a^{5}+b^{5}$CMR: $a^{2}+b^{2}\leq 1+ab$
1
phiếu
2đáp án
1K lượt xem

bất dẳng thức

a,b,c>0 thỏa mẫn a+b+c=1.Chứng minh rằng:a) $\frac{11a+9b}{a(a+b)}+\frac{11b+9c}{b(b+c)}+\frac{11c+9a}{c(c+a)}\geqslant 90 $b) $\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geqslant 30 $
1
phiếu
1đáp án
1K lượt xem

bất dẳng thức

Cho a,b,c>0 thỏa mãn a+b+c=1. Chứng minh rằng:$\frac{\sqrt{a}}{1-a}+\frac{\sqrt{b}}{1-b}+\frac{\sqrt{c}}{1-c}\geqslant \frac{3\sqrt{3}}{2}$
1
phiếu
1đáp án
1K lượt xem

bất đẳng thức

Cho x,y,z >0 và xyz=1. Chứng minh rằng:$(\frac{1+x}{2})^n+(\frac{1+y}{2})^n+(\frac{1+z}{2})^n\geqslant 3$ (n là số nguyên dương)
2
phiếu
2đáp án
1K lượt xem

Giúp Mình Nhé

V$ới x,y,z>0.thỏa mãn \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} =2 $$Cm.xyz \leq\frac{1}{8}$
1
phiếu
2đáp án
1K lượt xem

bất đẳng thức

Cho a,b,c là 3 số dương và a+b+c=1. CMR: $\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\geqslant \frac{9}{2}$
2
phiếu
2đáp án
1K lượt xem

Bất đẳng thức

Với $a,b,c>0$.Và $abc=1$. Chứng minh rằng: $\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}+\frac{1}{(c+1)^2}+\frac{2}{(a+1)(b+1)(c+1)} \geq 1 $
1
phiếu
1đáp án
967 lượt xem

BĐT cô si

$a,b,c$ là 3 số thực không âm. Chứng minh rằng:$81abc.(a^{2}+b^{2}+c^{2})\leq (a+b+c)^{5}$
1
phiếu
3đáp án
2K lượt xem

Sử dụng bất đẳng thức $AM−GM$ trong chứng minh BĐT(2).

Cho $a,\,b>0$ và $x,\,y,\,z>0$ thỏa mãn: $x+y+z=1.$ Chứng minh rằng: $$\left(a+\dfrac{b}{x}\right)^4+\left(a+\dfrac{b}{y}\right)^4+\left(a+\dfrac{b}{z}\right)^4\geq3\left(a+3b\right)^4$$
1
phiếu
1đáp án
1K lượt xem

Sử dụng bất đẳng thức $AM-GM$ trong chứng minh BĐT(1).

Cho $a,\,b,\,c,\,d>0$ và $\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\geq3.$ Chứng minh rằng: $$abcd\leq\dfrac{1}{81}$$
0
phiếu
1đáp án
1K lượt xem

Sử dụng bất đẳng thức $AM-GM$ trong chứng minh BĐT.

Cho $x,\,y,\,z>0$ thỏa mãn $xy+yz+xz\leq3.$ Chứng minh rằng:...
1
phiếu
2đáp án
2K lượt xem

Tìm Min của đẳng thức $x^2+\frac{2}{x^3} $,với x>0

Tìm Min của đẳng thức $x^2+\frac{2}{x^3} $,với x>0(Chỉ được sử dụng cosi cho 2,3 số và các bất đẳng thức cơ bản.)
1
phiếu
2đáp án
1K lượt xem

Chứng minh một BĐT cơ bản bằng $AM-GM.$

Dùng BĐT $AM-GM$ chứng minh rằng: $$3\left(x^2+y^2+z^2\right)\geq\left(x+y+z\right)^2$$
1
phiếu
1đáp án
1K lượt xem

Dùng BĐT AM-GM trong chứng minh BĐT(4).

Cho $a,\,b,\,c$ dương và $abc=1.$ Chứng minh rằng: $$\dfrac{a^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{b^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{c^3}{\left(1+c\right)\left(1+a\right)}\geq\dfrac{3}{4}$$
1
phiếu
2đáp án
1K lượt xem

Dùng BĐT AM-GM trong chứng minh BĐT(3).

Cho $a,\,b,\,c$ dương. Chứng minh rằng: $$\dfrac{a^2}{b+2c}+\dfrac{b^2}{c+2a}+\dfrac{c^2}{a+2b}\geq\dfrac{a+b+c}{3}$$
2
phiếu
2đáp án
1K lượt xem

Dùng BĐT AM-GM trong chứng minh BĐT(2).

Cho $a,\,b,\,c$ dương và $abc=1.$ Chứng minh rằng: $$\dfrac{2}{a^3\left(b+c\right)}+\dfrac{2}{b^3\left(a+c\right)}+\dfrac{2}{c^3\left(a+b\right)}\geq3$$
0
phiếu
2đáp án
1K lượt xem

Dùng BĐT AM-GM trong chứng minh BĐT(1).

Cho $a,\,b,\,c$ dương. Chứng minh rằng: $$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\geq\dfrac{3\left(a+b+c\right)}{2\left(a^2+b^2+c^2\right)}$$
1
phiếu
1đáp án
1K lượt xem

Dùng BĐT AM-GM trong chứng minh BĐT.

Cho $\Delta ABC$, đặt $p=\dfrac{a+b+c}{2}.$ Chứng minh rằng: $$\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\geq2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)$$
1
phiếu
2đáp án
1K lượt xem

Cực trị.

Cho $x,\,y,\,z,\,t>0.$ Chứng minh rằng: $$\dfrac{x^3}{x^3+3xyz}+\dfrac{y^3}{y^3+3xyz}+\dfrac{z^3}{z^3+3xyt}+\dfrac{t^3}{t^3+3xyt}\geq1$$
2
phiếu
2đáp án
2K lượt xem

Bất Đẳng Thức

Chứng minh rằng:a) Nếu $x^{2}$ +$y^{2}$ = 1 thì $\left| {x+y} \right|$$\leq $$ \sqrt{2}$b) Nếu 4x-3y=15 thì $x^{2} $+ $y^{2}$$\geq $ 9
1
phiếu
1đáp án
1K lượt xem

Sử dụng AM-GM trong chứng minh BĐT(tt).

1. Cho $a,\,b,\,c>0$ thỏa mãn điều kiện $a+b+c=1.$ Chứng minh rằng: $(1-a)(1-b)(1-c)\geq8abc$2. Cho $x,\,y,\,z,\,t>0.$ Chứng minh rằng: $\dfrac{x^3}{x^3+3yzt}+\dfrac{y^3}{y^3+3ztx}+\dfrac{z^3}{z^3+3txy}+\dfrac{t^3}{t^3+3xyz}\geq1$
1
phiếu
2đáp án
1K lượt xem

Sử dụng AM-GM trong chứng minh BĐT.

1. Cho $x,\,y,\,z>0$ và $xyz=1.$ Chứng minh rằng: $\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+x}\geq\dfrac{3}{2}$2. Cho $x,\,y,\,z>0$...
1
phiếu
1đáp án
1K lượt xem

Mấy bạn nào giúp mình với . Cảm ơn nhiều

$\frac{1}{a} +\frac{1}{b} +\frac{1}{c} +\frac{1}{d} \geq \frac{16}{a+b+c+d } $$a,b,c,d >0 $
0
phiếu
1đáp án
1K lượt xem

CHứng minh

a)Chứng minh bất đẳng thức cô si cho n số không âm: b)Chứng minh bất dẳng thức Bunhiacopxki cho 2n số.
2
phiếu
1đáp án
1K lượt xem

bài này

Cho $a_1,a_2,a_3...a_n\geq0$ Chứng minh bất đẳng thức:$a_1+a_2+a_3+...+a_n\geq n\sqrt[n]{a_1a_2a_3...a_n}$
1
phiếu
1đáp án
1K lượt xem

Bất đăng thức với n

$\sqrt[n]{n!} < \frac{n+1}{2}$
0
phiếu
1đáp án
1K lượt xem

giải jum t bài này!!

$\sqrt[n]{n!}<\frac{n+1}{2}$
0
phiếu
1đáp án
1K lượt xem

bài này nữa

Chứng minh các bất đẳng thức sau: a)$\sqrt[n]{n}<1+\frac{2}{\sqrt{n}}(\forall n\neq 0)$b) $\sqrt[n]{n}<1+\frac{1}{\sqrt{n}}(\forall n\neq 0)$
0
phiếu
1đáp án
1K lượt xem

giải jum tớ bài này!!!

cm:$(1+\frac{1}{m})^m<(1+\frac1n)^n, \forall m<n$
2
phiếu
2đáp án
2K lượt xem

BĐT

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 9$ a,b,c>0 ; a+b+c =1
0
phiếu
2đáp án
1K lượt xem

jup mjh với

Cho $x,y,z>0$ và $\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2$CM: $xyz\leq \frac{1}{8}$
1
phiếu
2đáp án
1K lượt xem

jup mjh bài này

Cho:$ a+b+c=13$.CMR$a^{2}+8b^{2}+2c^{2}\geq 104$
0
phiếu
2đáp án
1K lượt xem

chứng minh bđt

Cho $x, y$ là 2 số thỏa mãn $xy\geq0$ .cmr...
2
phiếu
1đáp án
2K lượt xem

Bất đẳng thức nữa nè

Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.
1
phiếu
2đáp án
2K lượt xem

Bài bất đẳng thức

Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$.
0
phiếu
1đáp án
2K lượt xem

Băt đăng thức

Cho $a,b>0$ và $abc=1$. Chứng minh $\frac{1}{(1+a)^2}+\frac{1}{(1+b)^2}+ \frac{1}{(1+c)^2} \geq \frac{3}{4} $
2
phiếu
1đáp án
2K lượt xem

Bất đẳng thức

Cho $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} $

Trang trước1...34567 153050mỗi trang
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376