Bài tập hình không gian (2)
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. $G$ là trọng tâm của $\Delta SA
D$ và $I$ là trung điểm của cạnh $AB$. Lấy điểm
$M
$ trong đoạn $AD$ sao cho $AM=\frac{1}{3}AD$.$1)$ Tìm giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$.$2)$ Đường thẳng qua
$M
$ song song với $AB$ cắt $CI$ tại $N$. Chứng minh rằng: $NG//(SCD)$ và $MG//(SCD)$.
Hình chóp tứ giác
Giao tuyến
Mặt phẳng
Đường thẳng trong không gian
Bài tập hình không gian (2)
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. $
M$ là trung điểm của cạnh $AB$, $G$ là trọng tâm của $\Delta SA
B$ và $I$ là trung điểm của cạnh $AB$. Lấy điểm M trong đoạn $AD$ sao cho $AM=\frac{1}{3}AD$.$1)$ Tìm giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$.$2)$ Đường thẳng qua M song song với $AB$ cắt $CI$ tại $N$. Chứng minh rằng: $NG//(SCD)$ và $MG//(SCD)$.
Hình chóp tứ giác
Giao tuyến
Mặt phẳng
Đường thẳng trong không gian
Bài tập hình không gian (2)
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. $G$ là trọng tâm của $\Delta SA
D$ và $I$ là trung điểm của cạnh $AB$. Lấy điểm
$M
$ trong đoạn $AD$ sao cho $AM=\frac{1}{3}AD$.$1)$ Tìm giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$.$2)$ Đường thẳng qua
$M
$ song song với $AB$ cắt $CI$ tại $N$. Chứng minh rằng: $NG//(SCD)$ và $MG//(SCD)$.
Hình chóp tứ giác
Giao tuyến
Mặt phẳng
Đường thẳng trong không gian