Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$ Chứng minh rằng: $\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}\geq \frac{27}{5}$
Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$
Tìm min:$\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}$
Bất đẳng thức
Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$ Chứng minh rằng: $\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}\geq \frac{27}{5}$
Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$
Chứng min
h rằng:
$\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy
}\geq \frac{27}{5}$
Bất đẳng thức
Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$ Chứng minh rằng: $\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}\geq \frac{27}{5}$
Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$
Tìm min:$\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}$
Bất đẳng thức