$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$
. $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \f
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
Bất đẳng thức Bu-nhi-a-cốp-xki
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \f
r $\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
Bất đẳng thức Bu-nhi-a-cốp-xki
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$
. $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \f
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
Bất đẳng thức Bu-nhi-a-cốp-xki