Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
For positive real
numbers $a,b,c.$ Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
Bất đẳng thức
Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
For positive reals $a,b,c.$ Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
Bất đẳng thức
Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
For positive real
numbers $a,b,c.$ Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
Bất đẳng thức