$PT \Leftrightarrow sin^3x-sinx.cos^2x-\sqrt3cos^3x+\sqrt3sin^2x.cosx=0$$\Leftrightarrow sinx(sin^2x-cos^2x)-\sqrt3cosx(cos^2x-sin^2x)=0$$\Leftrightarrow (sin^2x-cos^2x)(sinx+\sqrt3cosx)=0$$\Leftrightarrow sin^2x-cos^2x=0 $$\Leftrightarrow sin^2x=cos^2x=\frac{1}2$$\Leftrightarrow x=\pm \frac{\pi}{4} + 2k\pi \Leftrightarrow x=\frac{\pi}4 +k\pi$Hoặc $sinx=\sqrt3cosx \Leftrightarrow sin^2x=3cos^2x$ $\Leftrightarrow cos^2x=\frac{1}4 \Leftrightarrow cosx = \pm\frac{1}2$$\Leftrightarrow x=\pm \frac{\pi}3 +2k\pi$hoặc $x= \pm\frac{2\pi}3+2k\pi$
$PT \Leftrightarrow sin^3x-sinx.cos^2x-\sqrt3cos^3x+\sqrt3sin^2x.cosx=0$$\Leftrightarrow sinx(sin^2x-cos^2x)-\sqrt3cosx(cos^2x-sin^2x)=0$$\Leftrightarrow (sin^2x-cos^2x)(sinx+\sqrt3cosx)=0$$\Leftrightarrow sin^2x-cos^2x=0 \Leftrightarrow x=\frac{\pi}4+k\pi$Hoặc $sinx=\sqrt3cosx \Leftrightarrow sin^2x=3cos^2x \Leftrightarrow x= \pm \frac{\pi}3 +2k\pi$
$PT \Leftrightarrow sin^3x-sinx.cos^2x-\sqrt3cos^3x+\sqrt3sin^2x.cosx=0$$\Leftrightarrow sinx(sin^2x-cos^2x)-\sqrt3cosx(cos^2x-sin^2x)=0$$\Leftrightarrow (sin^2x-cos^2x)(sinx+\sqrt3cosx)=0$$\Leftrightarrow sin^2x-cos^2x=0
$$\Leftrightarrow
sin^2x=cos^2x=\frac{
1}2$$\Leftrightarrow x=\pm \frac{\pi}
{4
} + 2k\pi \Leftrightarrow x=\frac{\pi}4 +k\pi$Hoặc $sinx=\sqrt3cosx \Leftrightarrow sin^2x=3cos^2x
$ $\Leftrightarrow
cos^2x=
\frac{1}4 \Leftrightarrow cosx = \pm
\frac{1}2$$\Leftrightarrow x=\pm \frac{\pi}3 +2k\pi$
hoặc $x= \pm\frac{2\pi}3+2k\pi$