$|x^{2}*|x + 3/4||= x^{2}$ <=> $x^{2}*|x+ 3/4| = x^{2}$<=> $|x + 3/4| =1$TH1: $x + 3/4 =1 => x =1/4$TH2: $x+ 3/4 =-1 => x= -7/4$
$
\left|x^2
\left|x+
\dfrac{3
}{4
}\right|
\right|=x^2
\\\Left
rig
ht
arrow x^2
\left|x+
\dfrac{3
}{4
}\right|=x^2
\\\Left
rig
ht
arrow \left|x
^2+
\dfrac{3
}{4
}\right|=1
\\\Leftrightarrow \left[ \begin{array}{l}x+
\dfrac{3
}{4
}=1
\\x+
\dfrac{3
}{4
}=-1
\end{array} \right.\\\Leftrig
ht
arrow \left[ \begin{array}{l}x=
\dfrac{1}{4}\\x=-
\dfrac{7
}{4
}\end{array} \right.$