3. $\mathop {\lim }\limits_{x \to 0}\frac{cosxsinx-tanx}{x^2.sinx}$= $\mathop {\lim }\limits_{x \to 0}\frac{sinx(cos^2x-1)}{x^2.sinx.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-x^2.(\frac{sinx}{x})^2}{x^2.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-1}{cosx}=-1$
3. $\mathop {\lim }\limits_{x \to 0}\frac{cosxsinx-tanx}{x^2.sinx}$= $\mathop {\lim }\limits_{x \to 0}\frac{sinx(cos^2x-1)}{x^2.sinx.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-x^3.(\frac{sinx}{x})^3}{x^3.\frac{sinx}{x}.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-1}{cosx}=-1$
3. $\mathop {\lim }\limits_{x \to 0}\frac{cosxsinx-tanx}{x^2.sinx}$= $\mathop {\lim }\limits_{x \to 0}\frac{sinx(cos^2x-1)}{x^2.sinx.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-x^
2.(\frac{sinx}{x})^
2}{x^
2.cosx}$=$\mathop {\lim }\limits_{x \to 0}\frac{-1}{cosx}=-1$