$a^2b+a^2c=\frac{a^2b+a^2c}{abc}=\frac{a}{c}+\frac{a}{b}=\frac{ab+ac}{bc}⇒bca2b+a2c=b2c2ab+ac\Rightarrow P = \sum\frac{b^2c^2}{ab+ac}⇔P+ab+bc+ca2=(b2c2ab+ac+ab+ac4)+(c2a2bc+ba+bc+ba4)+(a2b2ca+cb+ca+cb4)cosi≥bc+ca+ab\Leftrightarrow P \ge \frac{ab+bc+ca}{2} \ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac 32$
a2b+a2c=a2b+a2cabc=ab+acbc⇒bca2b+a2c=b2c2ab+ac⇒P=∑b2c2ab+ac⇔P+ab+bc+ca2=(b2c2ab+ac+ab+ac4)+(c2a2bc+ba+bc+ba4)+(a2b2ca+cb+ca+cb4)cosi≥bc+ca+ab⇔P≥ab+bc+ca2≥33√a2b2c22=32