1. $cos2x-1=-2sin^2x$$\frac{-2.(x)^2(\frac{sinx}{x})^2}{(3x)^2(\frac{sin3x}{3x})^2}$~$\frac{-2}{9}$2.$\frac{sinx(1-cosx)}{x^3cosx}=\frac{sinx.sin^2\frac{x}{2}}{x.(\frac{x}{2})^2.2}$~$\frac{1}{2}$
1. $cos2x-1=-2sin^22x$$\frac{-(2x)^2(\frac{sin2x}{2x})^2}{(3x)^2(\frac{sin3x}{3x})^2}$~$\frac{-4}{9}$2.$\frac{sinx(1-cosx)}{x^3cosx}=\frac{sinx.sin^2\frac{x}{2}}{x.(\frac{x}{2})^2.2}$~$\frac{1}{2}$
1. $cos2x-1=-2sin^2x$$\frac{-2
.(x)^2(\frac{sinx}{x})^2}{(3x)^2(\frac{sin3x}{3x})^2}$~$\frac{-
2}{9}$2.$\frac{sinx(1-cosx)}{x^3cosx}=\frac{sinx.sin^2\frac{x}{2}}{x.(\frac{x}{2})^2.2}$~$\frac{1}{2}$