$bpt\Leftrightarrow 3x^2+3x+4 \ge (3x+2)\sqrt{x^2+3}$$\Leftrightarrow \begin{cases}(3x^2+3x+4)^2-(3x+2)^2(x^2+3) \ge0 \\ x \ge \dfrac{-2}3 \end{cases}$$\Leftrightarrow \begin{cases}3x^3+x^2-6x+2 \ge0 \\ x \ge -\dfrac 23 \end{cases}$$\Leftrightarrow \begin{cases}(x-1)(3x^2+4x-2) \ge0 \\ x \ge -\dfrac 23\end{cases}$$\Leftrightarrow \begin{cases}\left[ \begin{array}{l} x \ge 1 \\ \dfrac{-\sqrt{10}-2}{3} \le x \le \dfrac{\sqrt{10}- 2}{3} \end{array} \right. \\x \ge \dfrac{-2}3 \end{cases}$$\Leftrightarrow \left[ \begin{array}{l} x \ge 1\\ \dfrac{-2}{3} \le x \le \dfrac{\sqrt{10}-2}{3} \end{array} \right.$
$bpt\Leftrightarrow 3x^2+3x+4 \ge (3x+2)\sqrt{x^2+3}$
Với $x < \frac {-2}3$ thì $VT>0$, $VP<0$ ( đúng)Với $x \ge \frac{-2}3$bpt $\Leftrightarrow
3x^2+3x+4 \ge
(3x+2)\s
qrt{x^2+3}
$$\Leftrightarrow (3x^2+3x+4)^2-(3x+2)^2(x^2+3) \ge0$$\Leftrightarrow 3x^3+x^2-6x+2 \ge0$$\Leftrightarrow (x-1)(3x^2+4x
+2) \ge0$$\Leftrightarrow \left[ \begin{array}{l}
x \ge 1\\ \dfrac{-\sqrt{10}-2}3
\le x \le \dfrac{\sqrt{10}-2}{3} \end{array} \right.
$Kết hợp ng
hiệm đc $
x \i
n \left
(- \in
fty
;\frac{\sqrt{10}-2}3 \right
] \cup [1;+\infty)$