Ta có $\frac{(a^{2}+b^{2})(a+b+c)}{a+b}=a^{2}+b^{2}+\frac{c(a^{2}+b^{2})}{a+b}\geq a^{2}+b^{2}+\frac{c(a+b)}{2}$$\Rightarrow P.(a+b+c) \geq 2(a^{2}+b^{2}+c^{2})+ab+bc+ca=\frac{3(a^{2}+b^{2}+c^{2})+(a+b+c)^{2}}{2}$$\geq (a+b+c)\sqrt{3(a^{2}+b^{2}+c^{2})} \Rightarrow P\geq 3$dấu '=' $\Leftrightarrow a=b=c=1$
Ta có $\frac{(a^{2}+b^{2})(a+b+c)}{a+b}=a^{2}+b^{2}+\frac{c(a^{2}+b^{2})}{a+b}\geq a^{2}+b^{2}+\frac{c(a+b)}{2}$$\Rightarrow VT.(a+b+c) \geq 2(a^{2}+b^{2}+c^{2})+ab+bc+ca=\frac{3(a^{2}+b^{2}+c^{2})+(a+b+c)^{2}}{2}$$\geq (a+b+c)\sqrt{3(a^{2}+b^{2}+c^{2})} \Rightarrow đpcm$dấu '=' $\Leftrightarrow a=b=c=1$
Ta có $\frac{(a^{2}+b^{2})(a+b+c)}{a+b}=a^{2}+b^{2}+\frac{c(a^{2}+b^{2})}{a+b}\geq a^{2}+b^{2}+\frac{c(a+b)}{2}$$\Rightarrow
P.(a+b+c) \geq 2(a^{2}+b^{2}+c^{2})+ab+bc+ca=\frac{3(a^{2}+b^{2}+c^{2})+(a+b+c)^{2}}{2}$$\geq (a+b+c)\sqrt{3(a^{2}+b^{2}+c^{2})} \Rightarrow
P\geq 3$dấu '=' $\Leftrightarrow a=b=c=1$