I=∫3π2−3π2f(x)dxJ=∫3π2−3π2f(−x)dxTa có \begin{align*}I+J&=\int_{\frac{-3\pi}2}^{\frac{3\pi}2}\sqrt{2-2\cos 2x}{\rm d}x\\ &=2\int_{\frac{-3\pi}2}^{\frac{3\pi}2}\sqrt{\sin^2x}{\rm d}x\\ &= 4\int_0^{\frac{3\pi}2}\left|\sin x\right|{\rm d}x \\ &=4\int_0^{\pi}\left|\sin x\right|{\rm d}x+4\int_{\pi}^{\frac{3\pi}2}\left|\sin x\right|{\rm d}x \\ &=4\int_0^{\pi}\sin x{\rm d}x+4\int_{\pi}^{\frac{3\pi}2}(-\sin x){\rm d}x \\ &=-4\cos x\bigg|_0^{\pi}+4\cos x\bigg|_{\pi}^{\frac{3\pi}2}\\&=24\end{align*}Mặt khác, khi đặt t=−x thì ta có:I=∫3π2−3π2f(x)dx=∫3π2−3π2f(t)dt=∫−3π23π2f(−x)d(−x)=∫3π2−3π2f(−x)dx=JSuy ra $I=J=12$, vậy tích phân cần tìm là 12
I=∫3π2−3π2f(x)dxJ=∫3π2−3π2f(−x)dxTa có \begin{align*}I+J&=\int_{\frac{-3\pi}2}^{\frac{3\pi}2}\sqrt{2-2\cos 2x}{\rm d}x\\ &=2\int_{\frac{-3\pi}2}^{\frac{3\pi}2}\sqrt{\sin^2x}{\rm d}x\\ &= 4\int_0^{\frac{3\pi}2}\left|\sin x\right|{\rm d}x \\ &=4\int_0^{\pi}\left|\sin x\right|{\rm d}x+4\int_{\pi}^{\frac{3\pi}2}\left|\sin x\right|{\rm d}x \\ &=4\int_0^{\pi}\sin x{\rm d}x+4\int_{\pi}^{\frac{3\pi}2}(-\sin x){\rm d}x \\ &=-4\cos x\bigg|_0^{\pi}+4\cos x\bigg|_{\pi}^{\frac{3\pi}2}\\&=
12\end{align*}Mặt khác, khi đặt
t=−x thì ta có:
I=∫3π2−3π2f(x)dx=∫3π2−3π2f(t)dt=∫−3π23π2f(−x)d(−x)=∫3π2−3π2f(−x)dx=JSuy ra $I=J=
6$, vậy tích phân cần tìm là
6