I=∫dx√4x2−4x+2=∫dx√(2x−1)2+1Đặt 2x−1=tant⇒dx=dt2cos2t⇒I=12∫dtcos2t√tan2t+1=12∫dtcos2t√1cos2t=12∫dtcost$=\frac{1}{2}\int\limits\frac{\cos tdt}{1-\sin^2t}$$=-\frac{1}{2}\int\limits\frac{d(sint)}{sin^2t-1}$$=-\frac{1}{2}\int\limits(\frac{1}{sint-1}-\frac{1}{sint+1})d(sint)$$=\frac{1}{2}\int\limits(\frac{1}{sint+1}-\frac{1}{sint-1})d(sint)$$=\frac{1}{2}ln\left| {\frac{sint+1}{sint-1}} \right|+C$
I=∫dx√4x2−4x+2=∫dx√(2x−1)2+1Đặt 2x−1=tant⇒dx=dt2cos2t⇒I=12∫dtcos2t√tan2t+1=12∫dtcos2t√1cos2t=12∫dtcost$=\frac{1}{2}\int\limits\frac{\cos tdt}{1-\sin^2t}=\frac{1}{2}\int\limits\frac{d(\sin x)}{1-\sin^2x}$$=\frac{1}{4}\int\limits(\frac{1}{1-\sin x}+\frac{1}{1+\sin x})d(\sin x)$$=\frac{1}{4}(-\ln|{1-\sin x}|+\ln|1+\sin x|)=\frac{1}{4}\ln|\frac{1+\sin x}{1-\sin x}|+C$