4(a3b3−−−−√+b3c3−−−−√+a3c3−−−−√)≤4c3+(a+b)3<=>4.3$\sqrt[3]{\sqrt[2]{a^{3}.b^{3}.c^{3}}}$ $\leq$ 4$c^{3}$ + $(a+b)^{3}$ (do a,b,c không âm)<=>12$\sqrt[6]{a^{6}.b^{6}.c^{6}}$ $\leq $ 4$c^{3}$ + $(a+b)^{3}$<=>12abc $\leq$ 4$c^{3}$ + $(a+b)^{3}$ (1)Ta có 4$c^{3}$ + $(a+b)^{3}$= $a^{3}$ + $b^{3}$ + $c^{3}$ + 3$a^{2}$.b + 3a.$b^{2}$ + 3$c^{3}$$\geq$ 3abc + 3$\sqrt[3]{27.a^{3}.b^{3}.c^{3}}$=3abc+9abc=12abc=>bdt(1) đúngVậy..
4(a3b3−−−−√+b3c3−−−−√+a3c3−−−−√)≤4c3+(a+b)3<=>4.3$\sqrt[3]{\sqrt[2]{a^{3}.b^{3}.c^{3}}}$$\leq$ 4($\sqrt{a^{3}b^{3}}$ + $\sqrt{b^{3}c^{3}}$ + $\sqrt{a^{3}c^{3}}$$)\leq$ 4$c^{3}$ + $(a+b)^{3}$<=>4.3$\sqrt[3]{\sqrt[2]{a^{3}.b^{3}.c^{3}}}$ $\leq$ 4$c^{3}$ + $(a+b)^{3}$ (do a,b,c không âm)<=>12$\sqrt[6]{a^{6}.b^{6}.c^{6}}$ $\leq $ 4$c^{3}$ + $(a+b)^{3}$<=>12abc $\leq$ 4$c^{3}$ + $(a+b)^{3}$ (1)Ta có 4$c^{3}$ + $(a+b)^{3}$= $a^{3}$ + $b^{3}$ + $c^{3}$ + 3$a^{2}$.b + 3a.$b^{2}$ + 3$c^{3}$$\geq$ 3abc + 3$\sqrt[3]{27.a^{3}.b^{3}.c^{3}}$=3abc+9abc=12abc=>bdt(1) đúngVậy..