|
|
|
bình luận
|
Tìm GTLN doan la a=b=0;c=1.hok biet dung hay sai
|
|
|
|
|
|
|
bình luận
|
Tìm GTLN de dung ma,hok sai dau
|
|
|
|
|
|
|
|
đặt câu hỏi
|
chung minh bdt
|
|
|
$a,b,c>0;abc=1$.chung minh $\frac{a}{1+c+b} + \frac{b}{1+c+a} + \frac{c}{1+a+b} \geqslant 1$
|
|
|
|
sửa đổi
|
bat dang thuc
|
|
|
dat A=\frac{a^{2}}{ba+ca}+\frac{b^{2}}{bc+ab}+\frac{c^{2}}{bc+ac}\Rightarrow A\times \left ( ab+bc+ca \right )\geqslant \left ( a+b+c \right )^{2}\Rightarrow A\geqslant \frac{a^{2}+b^{2}+c^{2}+2ab+2bc+2ca}{2ab+2bc+2ca}\geqslant \frac{3}{2}vi:a^{2}+b^{2}+c^{2}\geqslant ab+bc+ca
A=\frac{a^{2}}{ba+ca}+\frac{b^{2}}{bc+ab}+\frac{c^{2}}{bc+ac}\Rightarrow A\times \left ( ab+bc+ca \right )\geqslant \left ( a+b+c \right )^{2}\Rightarrow A\geqslant \frac{a^{2}+b^{2}+c^{2}+2ab+2bc+2ca}{2ab+2bc+2ca}\geqslant \frac{3}{2}vi:a^{2}+b^{2}+c^{2}\geqslant ab+bc+ca
|
|
|
|
đặt câu hỏi
|
cho:a+b+c=1,tim Max
|
|
|
Cho $a,b,c >0,a+b+c=1$. Tìm GTLN : $P=\frac{1+a^{2}}{1+b^{2}}+\frac{1+b^{2}}{1+c^{2}}+\frac{1+c^{2}}{1+a^{2}}$
|
|
|
|
giải đáp
|
bat dang thuc
|
|
|
$A=\frac{a^{2}}{ba+ca}+\frac{b^{2}}{bc+ab}+\frac{c^{2}}{bc+ac}$ $\Rightarrow A\times \left ( ab+bc+ca \right )\geqslant \left ( a+b+c \right )^{2}$
$\Rightarrow A\geqslant \frac{a^{2}+b^{2}+c^{2}+2ab+2bc+2ca}{2ab+2bc+2ca}\geqslant \frac{3}{2}$
vi:$a^{2}+b^{2}+c^{2}\geqslant ab+bc+ca$
|
|