|
|
sửa đổi
|
$\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2$
|
|
|
Phương trình vô tỉ
$\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2$
$\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2$
Phương trình vô tỉ $\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2$
|
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 26/05/2016
|
|
|
|
|
|
|
|
|
|
sửa đổi
|
(Bài Toán Thách Thức )CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
|
|
|
(Bài Toán Thách Thức ) (Bài Toán Thách Thức )Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
(Bài Toán Thách Thức ) CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$(Bài Toán Thách Thức )Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
|
|
|
sửa đổi
|
Tìm Max P= $\frac{a(b+c)}{a^2+bc}+\frac{b(c+a)}{b^2+ac}+\frac{c(a+b)}{c^2+ab}$
|
|
|
GiúpCho a,b,c là các số thực không âm trong đó 2 số bất kì không đồng thời bằng 0. Tìm MaxP= $\frac{a(b+c)}{a^2+bc}+\frac{b(c+a)}{b^2+ac}+\frac{c(a+b)}{c^2+ab}$
Tìm Max P= $\frac{a(b+c)}{a^2+bc}+\frac{b(c+a)}{b^2+ac}+\frac{c(a+b)}{c^2+ab}$Cho a,b,c là các số thực không âm trong đó 2 số bất kì không đồng thời bằng 0. Tìm MaxP= $\frac{a(b+c)}{a^2+bc}+\frac{b(c+a)}{b^2+ac}+\frac{c(a+b)}{c^2+ab}$
|
|
|
|