|
Xét $f(x)=ax^3+bx+c$. Ta có: $f(1)=a+b+c$ $f(\frac{1}{2})=\frac{a}{8}+\frac{b}{2}+c$ $f(0)=c$ Suy ra: $f(1)+4f(\frac{1}{2})+f(0)=\frac{3}{2}(a+2b+4c)=0$ *) Nếu $f(\frac{1}{2})=0$ , đpcm. *) Nếu $f(\frac{1}{2})\ne0 \Rightarrow \left[ \begin{array}{l} f(1)f(\frac{1}{2})<0\\ f(0)f(\frac{1}{2})<0 \end{array} \right.$, đpcm.
|