|
Phương trình đã cho tương đương với: $(\sin x-\cos x)(\sin^2x+\sin x\cos x+\cos^2x)=3\sin x\cos x-1$ $\Leftrightarrow (\sin x-\cos x)(1+\sin x\cos x)=3\sin x\cos x-1$ Đặt: $t=\sin x-\cos x=\sqrt2\sin(x-\dfrac{\pi}{4}),|t|\le\sqrt2$, khi đó: $\sin x\cos x=\dfrac{1-t^2}{2}$ Phương trình trở thành: $t(1+\dfrac{1-t^2}{2})=3\dfrac{1-t^2}{2}-1$ $\Leftrightarrow t^3-3t^2-3t+1=0$ $\Leftrightarrow \left[\begin{array}{l}t=-1\\t=2-\sqrt3\end{array}\right.$, vì $|t|\le\sqrt2$ Khi đó: $\left[\begin{array}{l}\sin(x-\dfrac{\pi}{4})=\dfrac{-1}{\sqrt2}\\\sin(x-\dfrac{\pi}{4})=\dfrac{2-\sqrt3}{\sqrt2}\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x=k2\pi\\x=\dfrac{3\pi}{2}+k2\pi\\x=\arcsin\dfrac{2-\sqrt3}{\sqrt2}+\dfrac{\pi}{4}+k2\pi\\x=\pi-\arcsin\dfrac{2-\sqrt3}{\sqrt2}+\dfrac{\pi}{4}+k2\pi\end{array}\right.,k\in\mathbb{Z}$
|