Ta có $(1+1)^{11} = C_{11}^0+C_{11}^1+C_{11}^2+...+C_{11}^6 +...+ C_{11}^{10} + C_{11}^{11}$
$(1+1)^5 = C_{11}^0 +C_{11}^1+...+C_{11}^5$
Trừ 2 vế cho nhau $(1+1)^{11} -(1+1)^5 = C_{11}^6 +...+ C_{11}^{10} + C_{11}^{11} = 2^{11}-2^5=2016$
b) Xét $(3-1)^{16} = 3^{16}C_{16}^0 - 3^{15}C_{16}^1+3^{14}C_{16}^2 -...+C_{16}^0 = 2^{16}$