$\int \dfrac{1}{(\dfrac{3}{2})^x - (\dfrac{2}{3})^x}dx =\int \dfrac{(\dfrac{3}{2})^x}{(\dfrac{3}{2})^{2x} -1}dx$
Đặt $(\dfrac{3}{2})^x = t \Rightarrow (\dfrac{3}{2})^x \ln \dfrac{3}{2} dx= dt$
$I= \dfrac{1}{\ln \dfrac{3}{2}} \int \dfrac{1}{t^2 -1}dt = \dfrac{1}{2\ln \dfrac{3}{2}} \int \bigg (\dfrac{1}{t-1}-\dfrac{1}{t+1} \bigg ) dt$
$= \dfrac{1}{2\ln \dfrac{3}{2}} \ln \bigg | \dfrac{t-1}{t+1} \bigg | + C =...$