Ap dung tinh chat: $C^{k}_{n}$=$C^{n-k}_{n}$ ta duoc:S=$C^{0}_{2009}$ + $C^{1}_{2009}$+..........+$C^{1004}_{2009}$
hay S=$C^{2009}_{2009}$ + $C^{2008}_{2009}$+..........+$C^{1005}_{2009}$
$\Rightarrow $ 2S=$C^{0}_{2009}$+ $C^{1}_{2009}$+$C^{2}_{2009}$+....+$C^{2008}_{2009}$+$C^{2009}_{2009}$=$(1+1)^{2009}$=$2^{2009}$
$\Rightarrow$S=$\frac{2^{2009}}{2}$=$2^{2008}$