$\mathop {\lim }\limits_{x \to 0}(\frac{\sqrt[3]{\cos x}-1 }{\sin ^2x}+\frac{1-\sqrt{\cos x} }{\sin^2 x})$ $=\mathop {\lim }\limits_{x \to 0}(\frac{\cos x-1}{\sin ^2x(\sqrt[3]{\cos ^{2}x}+\sqrt[3]{\cos x} +1) }+\frac{1-\cos x}{\sin ^2x(1+\sqrt{\cos x}) })$
$=\mathop {\lim }\limits_{x \to 0}(\frac{-2\sin ^{2}\frac{x}{2}}{4.sin^2\frac{x}2.cos^2\frac{x}2(\sqrt[3]{\cos ^{2}x} +\sqrt[3]{\cos x}+1) }+\frac{2\sin^{2} \frac{x}{2}}{4sin^2\frac{x}{2}cos^2\frac{x}{2}(\sqrt{cosx}+1) })$
$= \mathop {\lim }\limits_{x \to 0} (\frac{1}{2cos^2\frac{x}2(\sqrt[3]{cos^2x}+\sqrt[3]{cosx}+1)}+\frac{1}{2.cos^2\frac{x}2.(\sqrt{cosx}+1)}$
$=\frac{1}{2.1.3}+\frac1{2.1.2}=\frac{5}{12}$