$I = \int\limits_{0}^{\pi}\frac{\sin^{2014}x}{\sin^{2014}x+\cos^{2014}x}dx =\int\limits_{0}^{\pi/2}\frac{\sin^{2014}x}{\sin^{2014}x+\cos^{2014}x}dx +\int\limits_{\pi/2}^{\pi}\frac{\sin^{2014}x}{\sin^{2014}x+\cos^{2014}x}dx = I_1+I_2$
Xét $I_2$
Đặt $x = \pi/2+t$
$dx = dt $
$x = \pi/2 \to t = 0; x = \pi \to t = \pi/2$
$I_2 = \int\limits_{\pi/2}^{\pi}\frac{\sin^{2014}x}{\sin^{2014}x+\cos^{2014}x}dx=\int\limits_{0}^{\pi/2}\frac{\sin^{2014}(\pi/2+t)}{\sin^{2014}(\pi/2+t)+\cos^{2014}(\pi/2+t)}dt = \int\limits_{0}^{\pi/2}\frac{\cos^{2014}t}{\sin^{2014}t+\cos^{2014}t}dt = \int\limits_{0}^{\pi/2}\frac{\cos^{2014}x}{\sin^{2014}x+\cos^{2014}x}dx$
$I = I_1+I_2 = \int\limits_{0}^{\pi/2}dx =\pi/2$
Nhớ vote