Từ đk đề bài ,thực hiện nhân liên hợp ta đc:{(x2−y2−1)(y+√1+x2)=x−√1+y2(y2−1−x2)(x+√1+y2=y−√1+x2Lấy 2 pt trừ cho nhau ta đc:(x2−y2)(y+√1+x2+x+√1+y2)+(x−y)−(√1+x2−√1+y2)=x−y+x2−y2
⇔(x2−y2)(x+√1+y2+y+√1+x2−2)=0
⇔[x=yx=−yx+√1+y2+y+√1+x2=2(∗)
+)Với x=y thay vào đk đè bài ta đc dpcm(x=-y cũng tương tự)
+)Đặt {x+√1+y2=ay+√1+x2=bTừ đó kết hợp pt(*) với đk đề bài ta có hệ:
{ab=1a+b=2⇔{a=1b=1⇔{x+√1+y2=1y+√1+x2=1 Lấy 2 pt trừ cho nhau rồi đưa về tích sau đó bạn tự giải tiếp sẽ ra đpcm