a+b+c=0<=>a3+b3+c3=3abc (bạn tự cm nhé)
Áp dụng bổ đề ta có:
(y−z)3(1−x3)+(z−x)3(1−y3)+(x−y)3(1−z3)=3(x−y)(y−z)(x−z)(1−x3)(1−y3)(1−z3)−−−−−−−−−−−−−−−−−−−√3
Ta phân tích VT thì:
(y−z)3(1−x3)+(z−x)3(1−y3)+(x−y)3(1−z3)=(y−z)3+(z−x)3+(x−y)3−[(xy−xz)3+(yz−xy)3+(xz−yz)3]=3(x−y)(y−z)(x−z)−3xyz(x−y)(y−z)(x−z)=3(x−y)(y−z)(x−z)(1−xyz)
Như vậy:
3(x−y)(y−z)(x−z)(1−xyz)=3(x−y)(y−z)(x−z)(1−x3)(1−y3)(1−z3)−−−−−−−−−−−−−−−−−−−√3<=>(1−x3)(1−y3)(1−z3)=(1−xyz)3
Đây là đpcm