Đk: x≠1Bpt ⇔x+2≥√2(x4−x2+1)−1x−1 (∗)
TH1: Nếu x>1 thì
(∗)⇔(x+2)(x−1)≥√2(x4−x2+1)−1
⇔x2+x−1≥√2(x4−x2+1)
⇔{x2+x−1≥0(x2+x−1)2≥2(x4−x2+1)
⇔{x2+x−1≥0x4−2x3−x2+2x+1≤0
⇔{x2+x−1≥0(x2−x−1)2≤0⇔{x2+x−1≥0x2−x−1=0
⇔x=1+√52
TH2: Nếu x<1 thì √2(x4−x2+1)−1>0
(∗)⇔(x+2)(x−1)≤√2(x4−x2+1)−1
⇔{−2≤x<1{x<−2(x2−x−1)2≥0
⇔x<1
Kết hợp lại