1. Ta có: $\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}$
$=\dfrac{bc(b-c)+ac(c-a)+ab(a-b)}{abc}$
$=\dfrac{-(a-b)(b-c)(c-a)}{abc}$
$\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}$
$=\dfrac{a(c-a)(a-b)+b(b-c)(a-b)+c(b-c)(c-a)}{(a-b)(b-c)(c-a)}$
$=\dfrac{-(a^3+b^3+c^3)+(a+b)(b+c)(c+a)-5abc}{(a-b)(b-c)(c-a)}$
$=\dfrac{-3abc+(-c)(-a)(-b)-5abc}{(a-b)(b-c)(c-a)}$
$=\dfrac{-9abc}{(a-b)(b-c)(c-a)}$
Suy ra: $(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c})(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b})=9$