Bài 1:
Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. Các đường thẳng $AB$ và $CD$ cắt nhau tại $E$; các đường thẳng $AD$ và $BC$ cắt nhau tại $F$. Phân giác trong của góc $\widehat{DFC}$ cắt $AB$ tại $P$, cắt $CD$ tại $Q$. Chứng minh rằng;
a) $\Delta PQE$ cân.
b) $EF^2=FA.FD + EA.EB$
Bài 2:
Cho tam giác $ABC$ ( $AB<AC$ ) ngoại tiếp đường tròn $(O)$; $I,J$ lần lượt là các tiếp điểm của $(O)$ với các cạnh $AB,AC$. Gọi $(K)$ là đường tròn bàng tiếp trong góc $\widehat{BAC}$ của tam giác $ABC$ tiếp xúc với các cạnh $AB,AC$ lần lượt tại $F,G$. Các đường thẳng $IJ$ và $BO$ cắt nhau tại $H$.
a) Chứng minh rằng $\widehat{BHC}=90$
b) Gọi $M$ là giao điểm của $KC$ và $GF$; N là giao điểm của $IJ$ và $CO$. Chứng minh rằng $MN$ song song với $AC$.