Ta có: a2+3aba2−9b2+2a2−5ab−3b26ab−a2−9b2=a(a+3b)(a−3b)(a+3b)−(a−3b)(2a+b)(a−3b)2
=aa−3b−2a+ba−3b=−a2+2ab+3b2a2−9b2=−(a+b)(a−3b)(a−3b)(a+3b)=−a+ba+3b
a2+an+ab+bn3bn−a2−an+3ab=−(a+b)(a+n)(a+n)(a−3b)=−a+ba+3b
⇒a2+3aba2−9b2+2a2−5ab−3b26ab−a2−9b2=a2+an+ab+bn3bn−a2−an+3ab.