Điều kiện: sin(3π2+x)≠0⇒x≠−3π2+kπ(k∈Z)cos(x)≠0⇒x≠π2+kπ(k∈Z)
Ta có: cot(3π2+x)=−tan(π+x)=−tan(x)
Ptr ban đầu: −tan(x)−tan2(x)=cos(2x)−1cos2(x)
⇔cos(2x)−1cos2(x)+sin2(x)cos2(x)+sin(x)cos(x)=0
⇔cos(2x)−1+sin2(x)+sin(x)cos(x)=0
⇔1−2sin2(x)−1+sin2(x)+sin(x)cos(x)=0
⇔sin(x)cos(x)−sin2(x)=0
⇔sin(x)[cos(x)−sin(x)]=0
⇔sin(x)=0 hay sin(x)=cos(x)
Với sin(x)=0⇒x=kπ(k∈Z)
Với sin(x)−cos(x)=0⇒sin(x−π4)=0⇒x=π4+kπ(k∈Z)