$(1)\Leftrightarrow (\sqrt{4x^2+15}-4)-(\sqrt{4x^2+3}-2)-3(2x-1)\leq 0$ $\Leftrightarrow \frac{4x^2-1}{\sqrt{....}+\sqrt{....}}-\frac{4x^2-1}{\sqrt{....}+\sqrt{....}}-3(2x-1)\leq 0$
$\Leftrightarrow (2x-1)[..............]\leq 0$
Có:
$[............]=(2x+1)[\frac{\sqrt{4x^2+3}+2-\sqrt{4x^2+15}-4}{(...)(....)}]-3<0$
Vậy $2x-1\geq 0\Leftrightarrow .................$