1) Đk cos2x≠0pt⇔2sin3x.cos2xcos2x=√2.√2sin(2x+π4)
⇔sin3x=sin(2x+π4)
⇔[x=π4+k2πx=3π20+k2π5(k∈Z)
2) Đk sinx≠0,cosx≠0
pt⇔√3cos2x+sin2x=sin2x+cos2x2sinxcosx
⇔√3cos2x+sin2x=1sin2x
⇔√3.sin4x+2sin22x=2
⇔√3sin4x+1−cos4x=2
⇔√3sin4x−cos4x=1
⇔sin(π6−4x)=−12
⇔[x=12kπ−π6x=−2kπ−π4(k∈Z)