2$0<\alpha <90\Rightarrow \cos \alpha \neq 0 $
$\sin\alpha +\cos \alpha =7/5\Rightarrow sin \alpha /cos \alpha +1=7/(5cos\alpha )(chia 2 vế cho cos \alpha)$
$\Rightarrow (1 + tan\alpha)² = 49/25cos²\alpha = 49/25.(1 + tan²\alpha) $
$\Rightarrow 25(1 + tan\alpha)² = 49(1 + tan²\alpha) $
$\Rightarrow 25(1 + tan²\alpha + 50tan\alpha = 49(1 + tan²\alpha) $
$\Rightarrow 24(1 + tan²\alpha) - 50tan \alpha = 0 $
$\Rightarrow 24tan²\alpha - 50tan\alpha + 24 = 0 $
có $Δ' = 25² - 24² = 7² $
$tan \alpha = 4/3 hoặc tan \alpha= 3/4 $
$mà 0 < \alpha < 90o => tan\alpha > 1 $
Vậy tan \alpha = 4/3.