Chứng minh: $\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
leq \frac{3}{2}$
Cho $a,b,c>0.$ Chứng minh: $\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
leq \frac{3}{2}$
Bất đẳng thức Cô-si
Chứng minh:
$\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
geq \frac{3}{2}$
Cho $a,b,c>0.$ Chứng minh: $\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
geq \frac{3}{2}$
Bất đẳng thức Cô-si
Chứng minh: $\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
leq \frac{3}{2}$
Cho $a,b,c>0.$ Chứng minh: $\frac{ab+bc-ca}{a^2+b^2}+\frac{bc+ca-ab}{b^2+c^2}+\frac{ca+ab-bc}{c^2+a^2}\
leq \frac{3}{2}$
Bất đẳng thức Cô-si