CMR trong tam giác $ABC$ thì $cotA,cotB,cotC$ lập thành cấp số cộng khi và chỉ khi $\cos B = \frac{{{b^2}}}{{2ac}}$



Theo giả thiết ta có $cotA+cotC=2cotB(1)$
Theo định lý hàm số cosin suy rộng và công thức $S=2bcsinA$,ta có
$\begin{array}{l}
(1) \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}} = 2\frac{{{a^2} + {c^2} - {b^2}}}{{4S}}\\
 \Leftrightarrow {a^2} + {c^2} = 2{b^2}\\
 \Leftrightarrow {a^2} + {c^2} - {b^2} = {b^2}\\
 \Leftrightarrow \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{b^2}}}{{2ac}}\\
 \Leftrightarrow \cos B = \frac{{{b^2}}}{{2ac}}
\end{array}$(2)
Nhận xét
$1/$ Từ $(2)$ suy ra lớp các tam giác ABC thỏa mãn điều kiện là khác rỗng. Thật vậy, có $1$ tam giác như vậy, là tam giác $ABC$ với $a = 4,b = \sqrt {10} ,c = 2$
$2/$ Ta có bài toán tương tự sau :
CMR: trong tam giác $ABC$ thì $4tanA,tanB,tanC$ lập thành cấp số cộng khi và chỉ khi $tanAtanC=3$
Thật vậy
$\begin{array}{l}
tanA + tanC = 2tanB\\
 \Leftrightarrow tanA + tanC =  - 2tan(A + C)\\
 \Leftrightarrow tanA + tanC = 2\frac{{tanA + tanC}}{{tanAtanC - 1}}(*)
\end{array}$
Do $tanA+tanC\neq 0$ nên từ $(*)$ suy ra $tanAtanC=3$
Đó là đpcm.
$3/$ Như trên  đã thấy trong tam giác $ABC$,thì
$\cot gA + \cot gC = 2\cot gB \Leftrightarrow {a^2} + {c^2} = 2{b^2}$
Bây giờ ta đưa thêm $1$ điều kiện cần và đủ để có $cotA+cotC=2cotB$ dưới dạng hình học như sau
 
Cho tam giác $ABC$ không cân đỉnh $B. 3$ trung tuyến kẻ từ $A,B,C$ cắt đường tròn  ngoại  tiếp tại $A’,B’,C’$. Khi đó ta có :
$cotA+cotC=2cotB$$ \Leftrightarrow B'A' = B'C'$
Thật vậy,gọi $G$ là trọng tâm tam giác $ABC$. Khi đó, từ sự đồng dạng của $2$ tam giác $C’B’G$ và $BCG$, ta có:
$\frac{{C'B'}}{{BC}} = \frac{{B'G}}{{CG}}$
Tương tự có $\frac{{A'B'}}{{AB}} = \frac{{B'G}}{{AG}}$
Từ đó suy ra $B'A' = B'C' \Leftrightarrow \frac{{AB}}{{BC}} = \frac{{AG}}{{CG}}$
$\begin{array}{l}
 \Leftrightarrow \frac{c}{a} = \frac{{{m_a}}}{{{m_c}}}\\
 \Leftrightarrow {(\frac{c}{a})^2} = {(\frac{{{m_a}}}{{{m_c}}})^2}\\
 \Leftrightarrow \frac{{{c^2}}}{{{a^2}}} = \frac{{2{b^2} + 2{c^2} - {a^2}}}{{2{a^2} + {b^2} - {c^2}}}\\
 \Leftrightarrow 2{a^2}{c^2} + 2{b^2}{c^2} - {c^4} = 2{a^2}{b^2} + 2{a^2}{c^2} - {a^4}\\
 \Leftrightarrow 2{b^2}({c^2} - {a^2}) = {c^4} - {a^4} = ({c^2} - {a^2})({c^2} + {a^2})
\end{array}$
Do a#c $\begin{array}{l}
 \Rightarrow B'A' = A'C' \Leftrightarrow {a^2} + {c^2} = 2{b^2} \Leftrightarrow \cot A + \cot C = 2\cot B\\
 \Rightarrow dpcm
\end{array}$
$4)$ TA lại đưa thêm  tiêu chuẩn hình học nữa để $cotA+cotC=2cotB$
Xét tam giác $ABC$ với $a \le b \le c$ và không cân đỉnh $B$
Khi đó $cotA+cotC=2cotB$ nếu tam giác $ABC$ đồng dạng với tam giác mà $3$ cạnh là $3$ trung tuyến của tam giác ấy
$a \le b \le c \Rightarrow {m_a} \ge {m_b} \ge {m_c}$
Thật vậy:
$\begin{array}{l}
2{b^2} + 2{c^2} - {a^2} = 2{a^2} + 2{c^2} - {b^2} + (3{b^2} - 3{a^2})\\
 \Rightarrow 4m_a^2 = 4m_b^2 + 3({b^2} - {a^2}) \ge 4m_b^2(b \ge a)\\
 \Leftrightarrow {m_a} \ge {m_b}
\end{array}$
Nhận xét được chứng minh.Gọi $M$ là tam giác có $3$ cạnh là $3$ trung tuyến của tam giác $ABC$ ,ta có :    $\frac{{{m_a}}}{{{m_b}}} = \frac{c}{b};\frac{{{m_a}}}{{{m_c}}} = \frac{c}{a}$         
Do $a\# c \Rightarrow {a^2} + {c^2} = 2{b^2}$
              $\begin{array}{l}
 \Rightarrow \cot A + \cot C = 2\cot B\\
 \Rightarrow
\end{array}$ (đpcm)
$5/$ Xét thêm $1$ tiêu chuẩn nữa như sau :
Gọi $G$ là trọng tâm tam giác $ABC$. Khi đó nếu như $AC$ là tiếp tuyến đường tròn ngoại tiếp tam giác $ABG$ thì $cotA+cotC=2cotB$
Thật vậy. Gọi $M,N$ là trung điểm của $AB,BC,G$ là trọng tâm.
Do $AC$ là tiếp tuyến đường tròn ngoại tiếp $AABG$, nên 
Vì $MN//AC $
Do vậy là tứ giác nội tiếp. Vì thế ta có
                                   $\begin{array}{l}
\left\{ \begin{array}{l}
AG.AN = AM.AB\\
CN.CB = CG.CM
\end{array} \right.\\
 \Rightarrow \left\{ \begin{array}{l}
\frac{2}{3}{m_a}{m_a} = \frac{c}{2}c\\
\frac{2}{3}{m_c}{m_c} = \frac{a}{2}a
\end{array} \right.\\
 \Rightarrow \left\{ \begin{array}{l}
4m_a^2 = 3{c^2}\\
4m_c^2 = 3{a^2}
\end{array} \right.\\
 \Rightarrow \left\{ \begin{array}{l}
2{b^2} + 2{c^2} - {a^2} = 3{c^2}\\
2{b^2} + 2{a^2} - {c^2} = 3{a^2}
\end{array} \right.\\
 \Rightarrow 2{b^2} = {a^2} + {c^2}\\
 \Rightarrow \cot A + \cot C = 2\cot B\\
 \Rightarrow (đpcm)
\end{array}$
Vì thế tiêu chuẩn hình học $“AC$ là tiếp tuyếnđường tròn ngoại tiếp tam giác $ABG” $ cũng là điều kiện đủ để trong tam giác $ABC$ có $cotA+cotC=2cotB$
S=1/2BCsinA –  Học sinh ngu Toán 25-01-16 12:48 AM

Thẻ

Lượt xem

3727
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376