SỐ PHỨC - MỘT SỐ DẠNG BÀI TẬP CĂN BẢN


I.    LÝ THUYẾT

1.Khái niệm:
Số phức là một biểu thức có dạng $a + bi$ với $a,b \in \mathbb{R},\;{i^2} = - 1$
Kí hiệu : $z = a + bi$ với $a$ là phần thực, $b$ là phần ảo, $i$ là đơn vị ảo.
Tập hợp các số phức được kí hiệu : $\mathbb{C}$
Lưu ý :
Mỗi số thực $a$ đều được xem là $1$ số phức với phần ảo $b=0$
Số phức có phần thực $a=0$ được gọi là số thuần ảo .
Số $0$ vừa là số thực vừa là số ảo.
2. Hai số phức bằng nhau :
Cho $z=a+bi$ và $z’=a’+b’i$ thì       $z = z' \Leftrightarrow \left\{ \begin{gathered}
  a = a' \\
  b = b' \\
\end{gathered}  \right.$
3.Biểu diễn hình học của số phức :
Mỗi số phức được biểu diễn bởi một điểm $M(a;b)$ trên mặt phẳng tọa độ $Oxy$.
4. Phép cộng và phép trừ các số phức :
Cho $2$ số phức $z=a+bi$ và $z’=a’+b’i$ thì
$z+z’=(a+a’) + (b+b’)i$ và $z-z’=(a-a’) + (b-b’)i$
5.Phép nhân số phức :
Cho $2$ số phức $z=a+bi$ và $z’=a’+b’i$ thì
 $z.z’=(aa’-bb’)+ (ab’+a’b)i$
6.Số phức liên hợp :
Cho số phức $z=a+bi.$ Số phức $\overline z $$=a-bi$ được gọi là số phức liên hợp của số phức $z$
7. Mô đun của số phức :
Cho $z=a+bi$ thì $\left| z \right|$ là mô đun của số phức $z$ đó là số thực không âm được xác định như sau :
•    Nếu $M(a;b)$ biểu diễn số phức $z =a+bi$ thì $\left| z \right| = \left| {\overrightarrow {OM} } \right| = \sqrt {{a^2} + {b^2}} $
•    Nếu $z=a+bi$ thì $\left| z \right| = \sqrt {z.\overline z }  = \sqrt {{a^2} + {b^2}} $
8.Phép chia số phức khác 0:
Cho số phức $z=a+bi$ thì số phức nghịch đảo của số phức $z$ là ${z^{ - 1}}$được xác định như sau
${z^{ - 1}} = \frac{1}{z} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{{a^2} + {b^2}}}$

Chú ý : Các phép toán cộng, trừ, nhân, chia số phức cũng có đầy đủ các tính chất giao hoán, phân phối , kết hợp như các phép cộng, trừ, nhân, chia số thực thông thường.

Các dạng bài tập căn bản:
•    Tính phần thực, phần ảo của biểu thức phức
•    Tính modun, liên hợp của số phức
•    Tính toán trên các biểu thức phức
Lưu ý : Ta tính toán trong số phức như tính trong tập số thực.
Khi gặp $i^2$ thì ta thay bởi $-1$, và khi thực hiện phép chia thì ta nhân tử và mẫu cho số phức liên hợp của mẫu.

II. CÁC DẠNG BÀI TẬP

Dạng 1. Tìm phần thực và phần ảo của số phức :
Phương pháp :
Biến đổi số phức về dạng $z= a+ bi$ từ đó xác định được phần thực $a$, phần ảo $b$.

Bài 1:
Tìm phần thực và phần ảo của số phức $z = \frac{{(3 + 2i)(\overline {2 + 5i)} }}{{{{(4 + 3i)}^2}}} - {(3 + i)^3}$
Hướng dẫn:
Tính liên hợp của $2+5i$ là $2-5i$ rồi nhân với $3+2i$, ta được $16-11i$
Khai triển bình phương của $4+3i$, được $7+24i$
Nhân tử và mẫu với $7-24i$, được $\frac{-152-461i}{25}$
Khai triển $(3+i)^3$, được $18+26i$
Thực hiện phép trừ, kết quả cuối cùng là :
$Re(z) = \frac{-602}{25} , Im(z) = \frac{-696}{25}$

Bài 2:
Tìm phần thực và phần ảo của các số phức z biết :
a. $z = {\left( { - i} \right)^{2009}}$
b. $\overline z  = {\left( {\sqrt 2  + i} \right)^2}{\left( {1 - \sqrt 2 i} \right)^2}$
c.$z$ thỏa mãn điều kiện : $\left( {2 - 3i} \right)z + \left( {4 + i} \right)\overline z  =  - {\left( {1 + 3i} \right)^2}$
d. $z$ thỏa mãn điều kiện : ${\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z$
Hướng dẫn:
a. $z = {\left( {1 - i} \right)^{2009}} = {\left( {1 - i} \right)^{2008}}\left( {1 - i} \right) = {\left[ {{{\left( {1 - i} \right)}^2}} \right]^{1004}}\left( {1 - i} \right) = {2^{1004}} - {2^{1004}}i \\\Rightarrow a = {2^{1004}};\;b =  - {2^{1004}}$
b. $\overline z  = 5 + \sqrt 2 \,i \Rightarrow z = 5 - \sqrt 2 \;i$
c. Gọi z = a + bi $\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi$
Thay vào đẳng thức đã cho tìm được  $a = -2 , b = 5 $
d. $z = \frac{{8 + i}}{{2i + 1}} = 2 - 3i \Rightarrow a = 2;\;b =  - 3$

Bài 3:
Cho số phức $z = a + bi$$\left( {a,b \in \mathbb{R}} \right)$. Hỏi các số sau đây là số thực hay số ảo:
a) ${z^2} - {\left( {\bar z} \right)^2}$                                                  b) $\frac{{{z^2} + {{\left( {\bar z} \right)}^2}}}{{1 + z\bar z}}$
Hướng dẫn:
a) ${z^2} - {\left( {\bar z} \right)^2} = {\left( {a + bi} \right)^2} - {\left( {a - bi} \right)^2} = 4abi$ là số ảo
b) $\frac{{{z^2} + {{\left( {\bar z} \right)}^2}}}{{1 + z\bar z}} = \frac{{{{\left( {a + bi} \right)}^2} + {{\left( {a - bi} \right)}^2}}}{{1 + \left( {a + bi} \right)\left( {a - bi} \right)}} = \frac{{2\left( {{a^2} + {b^2}} \right)}}{{1 + {a^2} + {b^2}}}$ là số thực

Bài 4:
Tìm phần thực và phần ảo của số phức $z = {\left( {1 + i} \right)^n}$, biết $n \in \mathbb{N}$và thỏa mãn phương trình ${\log _4}\left( {n - 3} \right) + {\log _4}\left( {n + 9} \right) = 3$
Hướng dẫn:
Điều kiện : $3 < n \in \mathbb{N}$
Giải phương trình ${\log _4}\left( {n - 3} \right) + {\log _4}\left( {n + 9} \right) = 3$ được $n = 7$
Tìm được $z = {\left( {1 + i} \right)^7} = {\left( {1 + i} \right)^6}\left( {1 + i} \right) = {\left[ {{{\left( {1 + i} \right)}^2}} \right]^3}\left( {1 + i} \right) = 8 - 8i$

Bài tập tự giải:
Bài 1:
Tìm phần ảo của số phức $z$, biết: $\bar z = {(\sqrt 2  + i)^2}(1 - \sqrt 2 i)$.
Bài 2:
Tìm phần thực và phần ảo của các số phức sau :
a)  $(4 – i) + (2 + 3i) – (5 + i)$      
b)  $\frac{{\sqrt 3  - i}}{{1 + i}} - \frac{{\sqrt 2  + i}}{i}$

Loại 2 : Tính môđun, liên hợp của số phức :
Phương pháp :
Biến đổi số phức $z = a + bi \Rightarrow \overline z  = a - bi$
Biến đổi số phức về dạng $z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $

Bài 1:
Tìm môđun của số phức $z = 1 + 4i + {\left( {1 - i} \right)^3}$
Hướng dẫn:
Vì ${\left( {1 - i} \right)^3} = {1^3} - 3i + 3{i^2} - {i^3} = 1 - 3i - 3 + i =  - 2 - 2i$
Suy ra: $z =  - 1 + 2i \Rightarrow \left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}}  = \sqrt 5 $

Bài 2:
a.Tìm $\left| z \right|$ biết $z = 1 + 4i + {\left( {1 - i} \right)^3}$
b.Tìm $\left| {\overline z  + iz} \right|$ biết $\overline z  = \frac{{{{\left( {1 - \sqrt 3 i} \right)}^3}}}{{1 - i}}$
Hướng dẫn:
a. $z =  - 1 + 2i \Rightarrow \left| z \right| = \sqrt 5 $
b.
$\begin{gathered}
  \overline z  = \frac{{ - 8}}{{1 - i}} =  - 4 - 4i \\
   \Rightarrow \overline z  + iz =  - 8 - 8i \\
   \Rightarrow \left| {\overline z  + iz} \right| = 8\sqrt 2 \\
\end{gathered} $

Bài 3:
Tìm $\overline z $ biết $z = \left( {1 + i} \right)\left( {3 - 2i} \right) + \frac{1}{{3 + 2i}}$
Hướng dẫn:
$z = \frac{{68}}{{13}} - \frac{{11}}{{13}}i \Rightarrow \overline z  = \frac{{68}}{{13}} + \frac{{11}}{{13}}i$

Bài tập tự giải:
Bài 1:
Trong các số phức thỏa mãn điều kiện $\left| {z - 2 - 4i} \right|\, = \,\sqrt 5 $. Tìm số phức $z$ có modun lớn nhất
Bài 2:
Tính $\left| z \right|$, biết rằng:                       
a) $z = {\left( {1 + i\sqrt 3 } \right)^3}$                             b)  $z = \frac{1}{{1 + i}} + \frac{1}{{1 - i}}$
c)  ${\left( {\sqrt 3  + i} \right)^3} - {\left( {\sqrt 3  - i} \right)^3}$            d)  $\frac{{{{\left( {\sqrt 3  + i} \right)}^2}}}{{{{\left( {\sqrt 3  - i} \right)}^2}}}$
Bài 3 :
Tìm liên hợp của các số phức
a. $z = \frac{{{{\left( {1 + i} \right)}^2}\left( {\sqrt 2  - i} \right)}}{{\left( {\sqrt 2  + i} \right){{\left( {1 - i} \right)}^2}}}$                 b. $z = \frac{1}{{2i}} + \frac{3}{i} + \frac{6}{{5i}}$
c. $z = \left( {2 - 1} \right)\left( {1 + 2i} \right)\left( {3 - 4i} \right)$            d. $z = \frac{{\left( {2 - i} \right)\left( {1 + 2i} \right)\left( {2 - 4i} \right)}}{{2 + 3i}}$

Dạng 3. Tính toán trên các biểu thức phức
Phương pháp :
Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức

Bài 1:
Cho số phức $z = \frac{{\sqrt 3 }}{2} - \frac{1}{2}i$. Tính các số phức:
a.${\left( {\overline z } \right)^3}$
b.$1 + z + {z^2}$
Hướng dẫn:
a.${\left( {\overline z } \right)^3} = {\left( {\overline z } \right)^2}.\overline z  = \left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right)$
b.$1 + z + {z^2} = \frac{{3 + \sqrt 3 }}{2} - \frac{{1 + \sqrt 3 }}{2}i$

Bài 2:
Tính tổng $1 + i + {i^2} + {i^3} + ...... + {i^{2009}}$
Hướng dẫn:
Ta có $1 - {i^{2010}} = \left( {1 - i} \right)\left( {1 + i + {i^2} + {i^3} + .... + {i^{2009}}} \right)$
Mà $1 - {i^{2010}} = 1 - {\left( {{i^2}} \right)^{1005}} = 1 - {\left( { - 1} \right)^{1005}} = 1 + 1 = 2$
$ \Rightarrow 1 + i + {i^2} + {i^3} + {i^4} + ..... + {i^{2009}} = \frac{2}{{1 - i}}$
Vậy $1 + i + {i^2} + {i^3} + .... + {i^{2009}} = \frac{2}{{1 - i}} = 1 + i$

Bài 3:
Cho $z = \frac{{1 - i}}{{1 + i}}$ . Hãy tính ${z^{2010}}$
Hướng dẫn:
$z = \frac{{1 - i}}{{1 + i}} = \frac{{{{\left( {1 - i} \right)}^2}}}{{1 - {i^2}}} =  - i \Rightarrow {z^{2010}} = {\left( { - i} \right)^{2010}} = {\left[ {{{\left( { - i} \right)}^2}} \right]^{1005}} =  - 1$

Bài 4:
Tính số phức :
a.$z = {\left( {\frac{{1 + i}}{{1 - i}}} \right)^{16}} + {\left( {\frac{{1 - i}}{{1 + i}}} \right)^8}$
b. $z = {\left( {1 + i} \right)^{15}}$
Hướng dẫn:
a. $\frac{{1 + i}}{{1 - i}} = \frac{{{{\left( {1 + i} \right)}^2}}}{{1 - {i^2}}} = i \Rightarrow \frac{{1 - i}}{{1 + i}} =  - i$
$ \Rightarrow z = {i^{16}} + {\left( { - i} \right)^8} = {\left( {{i^2}} \right)^8} - {\left[ {{{\left( { - i} \right)}^2}} \right]^4} = 2$
b.
$\begin{gathered}
  {\left( {1 + i} \right)^2} = 2i \Rightarrow {\left( {1 + i} \right)^{14}} = {\left( {2i} \right)^{14}} = {\left[ {{{\left( {2i} \right)}^2}} \right]^7} =  - 128 \\
   \Rightarrow z = {\left( {1 + i} \right)^{15}} = {\left( {1 + i} \right)^{14}}\left( {1 + i} \right) =  - 128 - 128i \\
\end{gathered} $

Bài tập tự giải:
Bài 1 :
Thực hiện các phép tính :
$a.\frac{{4 - 3i}}{{1 + i}} + \frac{{1 + i}}{{4 - 3i}}$                                   b.$\frac{{\overline {7 - 2i} }}{{8 - 6i}}$
c. $\frac{{\left( {3 - 2i} \right)\left[ {\left( {4 + 3i} \right) - \left( {1 + 2i} \right)} \right]}}{{5 - 4i}}$           d. $2 - 5i + \frac{{1 + \sqrt 2 i}}{{2 + \sqrt 3 i}}$
Bài 2:
Rút gọn biểu thức sau:     
$a.\quad {(1 + i)^{25}}       b.\quad {\left( {\frac{{1 + \sqrt 3 i}}{{1 - i}}} \right)^{20}}     c.\quad {\left( {1 - \frac{{\sqrt 3  - i}}{2}} \right)^{24}}.$
Bài 3:
Rút gọn biểu thức sau:     
a) ${\left( {\frac{{1 + 2\sqrt 3 }}{{1 - i}}} \right)^{20}}$           b) $\frac{{{{\left( { - 1 + i\sqrt 3 } \right)}^{15}}}}{{{{\left( {1 - i} \right)}^{^{20}}}}}$+ $\frac{{{{\left( { - 1 - i\sqrt 3 } \right)}^{15}}}}{{{{\left( {1 + i} \right)}^{20}}}}$

Thẻ

Lượt xem

59994
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376