PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

 

Trong chuyên đề này ta sẽ hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành nhân tử và giải một số bài tập về phân tích đa thức thành nhân tử.

Ta sẽ tìm hiểu về các phương pháp sau:

1. Tách một hạng tử thành nhiều hạng tử

2. Thêm, bớt cùng một hạng tử

3. Đặt ẩn phụ

4. Phương pháp hệ số bất định


I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
Định lí bổ sung:

+  Đa thức $f(x)$ có nghiệm hữu tỉ thì có dạng $\frac{p}{q}$ trong đó $p$ là ước của hệ số tự do, $q$ là ước dương của hệ số cao nhất
+  Nếu $f(x)$ có tổng các hệ số bằng 0 thì $f(x)$ có một nhân tử là $x – 1$
+  Nếu $f(x)$ có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì $f(x)$ có một nhân tử là $x + 1$
+  Nếu $a$ là nghiệm nguyên của $f(x)$ và $f(1); f(- 1)$ khác 0 thì $\frac{{{{f(1)}}}}{{{{a  -  1}}}}$ và $\frac{{{{f( - 1)}}}}{{{{a  +  1}}}}$ đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do

Ví dụ 1:  $3x^2 – 8x + 4$
Hướng dẫn:

Cách 1: Tách hạng tử thứ 2
$3x^2 – 8x + 4 =  3x^2 – 6x  – 2x  + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)$
Cách 2: Tách hạng tử thứ nhất:
$3x^2 – 8x + 4 =  (4x^2 – 8x  + 4)  - x^2 = (2x – 2)^2 – x^2 = (2x – 2 + x)(2x – 2 – x) $
$= (x – 2)(3x – 2)$

Ví dụ 2:   $x^3 – x^2 – 4$

Hướng dẫn:
Ta nhận thấy nghiệm của $f(x)$ nếu có thì x = $ \pm 1; \pm 2; \pm 4$, chỉ có $f(2) = 0$ nên $x = 2 $ là nghiệm của $f(x)$ nên $f(x)$ có một nhân tử là $x – 2$. Do đó ta  tách $f(x)$ thành các nhóm có xuất hiện một nhân tử là $x – 2$
Cách 1:
$x^3 – x^2 – 4 =$ $\left( {{x^3} - 2{x^2}} \right) + \left( {{x^2} - 2x} \right) + \left( {2x - 4} \right) $

$ = {x^2}\left( {x - 2} \right) + x(x - 2) + 2(x - 2)= \left( {x - 2} \right)\left( {{x^2} + x + 2} \right)$
Cách 2:

${x^3} - {x^2} - 4 = {x^3} - 8 - {x^2} + 4 $

$= \left( {{x^3} - 8} \right) - \left( {{x^2} - 4} \right) = (x - 2)({x^2} + 2x + 4) - (x - 2)(x + 2)$
$=\left( {x - 2} \right)\left[ {\left( {{x^2} + 2x + 4} \right) - (x + 2)} \right] = (x - 2)({x^2} + x + 2)$

Ví dụ 3:  $f(x) =  3x^3 –  7x^2 + 17x – 5$

Hướng dẫn:
$ \pm 1, \pm 5$ không là nghiệm của $f(x)$, như vậy $f(x)$ không  có nghiệm nguyên. Nên $f(x)$ nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy $x =$ $\frac{1}{3}$ là nghiệm của $f(x)$ do đó $f(x)$ có một nhân tử là  $3x – 1$. Nên
$f(x) =  3x^3 –  7x^2 + 17x – 5 = 3{x^3} - {x^2} - 6{x^2} + 2x + 15x - 5 $

$= \left( {3{x^3} - {x^2}} \right) - \left( {6{x^2} - 2x} \right) + \left( {15x - 5} \right)$
= ${x^2}(3x - 1) - 2x(3x - 1) + 5(3x - 1) = (3x - 1)({x^2} - 2x + 5)$
Vì ${x^2} - 2x + 5 = ({x^2} - 2x + 1) + 4 = {(x - 1)^2} + 4 > 0$ với mọi $x$ nên không phân tích được thành nhân tử nữa

Ví dụ 4:  $x^3 + 5x^2 + 8x  + 4 $
Hướng dẫn:

Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ nên đa thức có một nhân tử là $x + 1$
$x^3 + 5x^2 + 8x  + 4 = (x^3 + x^2 ) + (4x^2 + 4x) + (4x + 4) $

$= x^2(x + 1) + 4x(x + 1) + 4(x + 1)$
$= (x + 1)(x^2 + 4x + 4) = (x + 1)(x + 2)^2$

Ví dụ 5:  $f(x) = x^5 – 2x^4 + 3x^3 – 4x^2 + 2$
Hướng dẫn:

Tổng các hệ số bằng 0 thì nên đa thức có một nhân tử là $x – 1$, chia $f(x)$ cho $(x – 1)$ ta có:
$x^5 – 2x^4 + 3x^3 – 4x^2 + 2 = (x – 1)(x^4  - x^3  + 2 x^2   - 2 x  - 2)$
Vì $x^4  - x^3  + 2 x^2   - 2 x  - 2$  không có nghiệm nguyên cũng không có nghiệm hữu tỉ nên không phân tích được nữa

Ví dụ 6:  $ x^4 + 1997x^2 + 1996x + 1997 $

Hướng dẫn:

$ x^4 + 1997x^2 + 1996x + 1997 = (x^4 + x^2 + 1) + (1996x^2 + 1996x + 1996)$

$=  (x^2 + x  + 1)(x^2 - x  + 1) + 1996(x^2 + x  + 1)$
$=  (x^2 + x  + 1)(x^2 - x  + 1 + 1996) = (x^2 + x  + 1)(x^2 - x  + 1997)$

Ví dụ 7:  $x^2 -  x - 2001.2002 $

Hướng dẫn:

$x^2 -  x - 2001.2002 = x^2 -  x - 2001.(2001 + 1)$
$= x^2 -  x – 20012 - 2001 = (x^2 – 20012) – (x + 2001) = (x + 2001)(x – 2002)$

II. THÊM , BỚT CÙNG MỘT HẠNG TỬ:
1. Thêm, bớt cùng một số hạng tử để xuất hiện hiệu hai bình phương:

Ví dụ 1: $4x^4 + 81 $

Hướng dẫn:
$4x^4 + 81 = 4x^4  + 36x^2 + 81 - 36x^2 = (2x^2 + 9)^2 – 36x^2 $

$= (2x^2 + 9)^2 – (6x)^2 = (2x^2 + 9 + 6x)(2x^2 + 9 – 6x) $
$= (2x^2 + 6x + 9 )(2x^2 – 6x + 9) $

Ví dụ 2: $x^8 + 98x^4 + 1 = $

Hướng dẫn:

$x^8 + 98x^4 + 1 = (x^8 + 2x^4 + 1 ) + 96x^4 $

$= (x^4 + 1)^2 + 16x^2(x^4 + 1) + 64x^4 - 16x^2(x^4 + 1) + 32x^4$
$= (x^4 + 1 + 8x^2)^2  – 16x^2(x^4 + 1 – 2x^2)$

$ = (x^4 + 8x^2  + 1)^2  - 16x^2(x^2 – 1)^2$
$= (x^4 + 8x^2  + 1)^2  - (4x^3 – 4x )^2 $
$= (x^4 + 4x^3 + 8x^2  – 4x + 1)(x^4 - 4x^3 + 8x^2  + 4x + 1)$

2. Thêm, bớt cùng một số hạng tử để xuất hiện nhân tử chung
Ví dụ 1: $x^7 + x^2 + 1$
Hướng dẫn:

$x^7 + x^2 + 1 = (x^7 – x)  + (x^2 + x + 1 ) $

$=  x(x^6 – 1) + (x^2 + x + 1 ) $

$=  x(x^3  - 1)(x^3 + 1) + (x^2 + x + 1 ) $

$= x(x – 1)(x^2 + x + 1 ) (x^3 + 1) + (x^2 + x + 1)$
$=  (x^2 + x + 1)[x(x – 1)(x^3 + 1) + 1]$

$ = (x^2 + x + 1)(x^5 –  x^4  +  x^2  - x + 1)$

Ví dụ 2: $x^7 + x^5 + 1$

Hướng dẫn:

$x^7 + x^5 + 1 = (x^7 – x ) + (x^5 – x^2 ) + (x^2  + x + 1) $
$= x(x^3 – 1)(x^3 + 1) + x^2(x^3 – 1) + (x^2  + x + 1) $
$= (x^2  + x + 1)(x – 1)(x^4 + x) + x^2 (x – 1)(x^2  + x + 1) + (x^2  + x + 1)$
$= (x^2  + x + 1)[(x^5 – x^4 + x^2 – x) + (x^3 – x^2 ) + 1] $

$= (x^2  + x + 1)(x^5 – x^4 + x^3 – x + 1) $

Ghi nhớ:
Các đa thức có dạng $x^{3m+1} + x^{3n+2} + 1$ như: $x^7 + x^2 + 1 ; x^7 + x^5 + 1 ; x^8 + x^4 + 1 ;x^5 + x + 1 ; x^8 + x + 1 ; …$ đều có nhân tử chung là  $x^2 + x + 1$

III. ĐẶT ẨN PHỤ:
Ví dụ 1:   $x(x + 4)(x + 6)(x + 10) + 128$
Hướng dẫn:

 $x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128$

$ =  (x^2 + 10x) + (x^2 + 10x  + 24) + 128$
Đặt  $x^2 + 10x + 12 =  y$, đa thức có dạng:
$(y – 12)(y + 12) + 128 = y^2 – 144 + 128 $

$= y^2 – 16 = (y + 4)(y – 4)$
$=  ( x^2 + 10x + 8 )(x^2  + 10x  + 16 ) $

$=  (x + 2)(x + 8)( x^2 + 10x + 8 )$

Ví dụ 2:  $A = x^4 + 6x^3 + 7x^2 – 6x + 1$
Hướng dẫn:

Giả sử $x \ne 0$ ta viết
$x^4 + 6x^3 + 7x^2 – 6x + 1 =  x^2 ( x^2 + 6x + 7 – \frac{{{6}}}{{{x}}}{{  +  }}\frac{{{{1 }}}}{{{{{x}}^{{2}}}}}) $

$= x^2 [(x^2 + \frac{{{{1 }}}}{{{{{x}}^{{2}}}}}$$) + 6(x - $$\frac{{{{ 1 }}}}{{{x}}}) + 7 ]$
Đặt $ x - \frac{{{{ 1 }}}}{{{x}}} = y $ thì  $x^2 + \frac{{{{1 }}}}{{{{{x}}^{{2}}}}} = y^2 + 2$, do đó
$A = x^2(y^2 + 2 + 6y + 7) = x^2(y + 3)^2  =  (xy + 3x)^2  $
$= [x(x - $$\frac{{{{ 1 }}}}{{{x}}}$$)^2 + 3x]^2 = (x^2 + 3x – 1)^2$
Chú ý: Ví dụ trên có thể giải bằng cách áp dụng hằng đẳng thức như sau:
$A = x^4 + 6x^3 + 7x^2 – 6x + 1 = x^4 + (6x^3 – 2x^2 ) + (9x^2 – 6x + 1 )$
$ =  x^4 + 2x^2(3x – 1) + (3x – 1)^2   = (x^2 + 3x – 1)^2$

Ví dụ 3:   $ A = ({x^2} + {y^2} + {z^2}){(x + y + z)^2} + {(xy + yz{{ + zx)}}^{{2}}}$
Hướng dẫn:

$A = ({x^2} + {y^2} + {z^2}){(x + y + z)^2} + {(xy + yz{{ + zx)}}^{{2}}}$

$=\left[ {({x^2} + {y^2} + {z^2}) + 2(xy + yz{{ + zx)}}} \right]({x^2} + {y^2} + {z^2}) + {(xy + yz{{ + zx)}}^{{2}}}$
Đặt  ${x^2} + {y^2} + {z^2}$$ = a, xy + yz + zx = b$ ta có
$A =  a(a + 2b) + b^2 = a^2 + 2ab + b^2  = (a + b)^2  $

$ = ( {x^2} + {y^2} + {z^2}$$ + xy + yz + zx)^2$

Ví dụ 4:  $B = 2({x^4} + {y^4} + {z^4}) - {({x^2} + {y^2} + {z^2})^2} - 2({x^2}$

                                                           $+ {y^2} + {z^2}){(x + y + z)^2} + {(x + y + z)^4}$
Hướng dẫn:

Đặt  $x^4 + y^2 + z^2 = a,  x^2 + y^2  + z^2 = b, x + y + z = c$  ta có:
$B = 2a – b^2 – 2bc^2 + c^4 $

$= 2a – 2b^2  + b^2 - 2bc^2 + c^4 = 2(a – b^2) + (b –c^2)^2$
Ta lại có: $a – b^2 =  - 2({x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}$) và $b –c^2 = - 2(xy + yz + zx)$ Do đó:
$B = - 4({x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}) + 4 (xy + yz + zx)^2 $
$= - 4{x^2}{y^2} - 4{y^2}{z^2} - 4{z^2}{x^2} + 4{x^2}{y^2} + 4{y^2}{z^2} + 4{z^2}{x^2} + 8{x^2}yz + 8x{y^2}z + 8xy{z^2} $

$= 8xyz(x + y + z)$

Ví dụ 5:  ${(a + b + c)^3} - 4({a^3} + {b^3} + {c^3}) - 12abc$
Đặt $a + b = m, a – b = n$  thì $4ab = m^2 – n^2$
$ a^3 + b^3 = (a + b)[(a – b)^2 + ab] = m(n^2 + $$\frac{{{{{m}}^{{2}}}{{  -  }}{{{n}}^{{2}}}}}{{{4}}}$).

Ta có:
$C = (m + c)^3 – 4. $$\frac{{{{{m}}^{{3}}}{{  +  3m}}{{{n}}^{{2}}}}}{{{4}}} - 4{{{c}}^{{3}}} - 3{{c(}}{{{m}}^{{2}}}{{  -   }}{{{n}}^{{2}}})$

$= 3( - c^3 +mc^2 – mn^2 + cn^2)$
$= 3[c^2(m - c) - n^2(m - c)] = 3(m - c)(c - n)(c + n) $

$= 3(a + b - c)(c + a - b)(c - a + b)$

IV. PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH:
Ví dụ 1:  $x^4 - 6x^3 + 12x^2 - 14x + 3$
Hướng dẫn:

Các số  $ \pm $1, $ \pm $3 không là nghiệm của đa thức, đa thức không có nghiệm nguyên củng không có nghiệm hữu tỉ.
Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng
$(x^2 + ax + b)(x^2 + cx + d) = x^4 + (a + c)x^3 + (ac + b + d)x^2 + (ad + bc)x + bd$
đồng nhất đa thức này với đa thức đã cho ta có:
$\left\{ \begin{array}
  a + c =  - 6  \\
  ac + b + d = 12  \\
  ad + bc =  - 14  \\
  bd = 3  \\
\end{array}  \right.$
Xét $bd = 3$ với  $b, d \in Z,b \in \left\{ { \pm 1, \pm 3} \right\}$
Với $b = 3$ thì $d = 1$ hệ điều kiện trên trở thành:
$\left\{ \begin{array}
  a + c =  - 6  \\
  ac =  - 8  \\
  a + 3c =  - 14  \\
  bd = 3  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  2c =  - 8  \\
  ac = 8  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  c =  - 4  \\
  a =  - 2  \\
\end{array}  \right.$
Vậy:  $x^4 - 6x^3 + 12x^2 - 14x + 3 =  (x^2 - 2x + 3)(x^2 - 4x  + 1) $

Ví dụ 2:  $2x^4 - 3x^3 - 7x^2 + 6x + 8$
Hướng dẫn:

Đa thức có 1 nghiệm là $x = 2$ nên có thừa số là  $x – 2$ do đó ta có:
$ 2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(2x^3 + ax^2 + bx + c) $
$=  2x^4 + (a - 4)x^3 + (b - 2a)x^2 + (c - 2b)x - 2c  $
$ \Rightarrow $ $\left\{ \begin{array}
  a - 4 = - 3  \\
  b - 2a = - 7  \\
  c - 2b = 6  \\
   - 2c = 8  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  a = 1  \\
  b = - 5  \\
  c = - 4  \\
\end{array}  \right.$
Suy ra:  $2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(2x^3 + x^2 - 5x  - 4) $
Ta lại có $2x^3 + x^2 - 5x  - 4$ là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có 1 nhân tử là $x + 1$

Nên  $2x^3 + x^2 - 5x  - 4 = (x + 1)(2x^2  - x - 4)$
Vậy: $2x^4 - 3x^3 - 7x^2 + 6x + 8 = (x - 2)(x + 1)(2x^2  - x - 4)$

Ví dụ 3:   $12x^2 + 5x - 12y^2 + 12y - 10xy - 3$

Hướng dẫn:

$12x^2 + 5x - 12y^2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy  - 1)$
$=  acx^2  + (3c - a)x  + bdy^2 + (3d - b)y + (bc + ad)xy – 3 $
$ \Rightarrow $$\left\{ \begin{array}
  ac = 12  \\
  bc + ad =  - 10  \\
  3c - a = 5  \\
  bd =  - 12  \\
  3d - b = 12  \\
\end{array}  \right. \Rightarrow \left\{ \begin{array}
  a = 4  \\
  c = 3  \\
  b =  - 6  \\
  d = 2  \\
\end{array}  \right.$
$ \Rightarrow $ $12x^2 + 5x - 12y^2 + 12y - 10xy - 3 = (4 x - 6y + 3)(3x + 2y  - 1)$

Bài tập tự giải
Phân tích các đa thức sau thành nhân tử:
1)     $x^3 - 7x + 6$
2)     $x^3 - 9x^2 + 6x + 16$
3)     $x^3 - 6x^2 - x + 30$
4)     $2x^3 – x^2 + 5x + 3$
5)     $27x^3 - 27x^2 + 18x – 4$
6)     $x^2 + 2xy + y^2  - x - y – 12$
7)     $(x + 2)(x +3)(x + 4)(x + 5) – 24$
8)     $4x^4 - 32x^2 + 1$
9)     $3(x^4 + x^2 + 1) - (x^2 + x + 1)^2 $
10)   $64x^4 + y^4$
11)   $a^6 + a^4 + a^2b^2 + b^4 – b^6$
12)   $x^3 + 3xy + y^3 – 1$
13)   $4x^4 + 4x^3 + 5x^2 + 2x + 1$
14)   $x^8 + x + 1$
15)   $x^8 + 3x^4 + 4 $
16)   $3x^2 + 22xy + 11x + 37y + 7y^2 +10$
17)   $x^4 - 8x + 63$

dc đấy@@2 –  ♥ღ๖ۣۜ Son ๖ۣۜGokuღ♥ 21-10-15 08:35 PM
sao không có phân tích 3 bien –  Ghost rider 15-07-15 10:18 AM
God! ~ ~~~! –  chuvalongdungtham 18-08-14 07:57 PM

Thẻ

Lượt xem

123767
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376