Phương pháp chung :

  Để chứng minh bất đẳng thức $f(x)>g(x)$ ta thực hiện :
+ Xét hàm số $h(x)=f(x)-g(x)$.
+ Tìm miền xác định của $h(x)$.
+ Tính đạo hàm cấp một, giải phương trình $h'(x)=0$. Tìm nghiệm.
+ Lập bảng biến thiên. Từ bảng biến thiên suy ra bất đẳng thức cần chứng minh.

  Các trường hợp :
+ Chứng minh $f(x) \ge A$ nghĩa là chứng minh $\min f(x) \ge A$, ở đây $A$ là hằng số.
+ Chứng minh $f(x) \le A$ nghĩa là chứng minh $\max f(x) \le A$, ở đây $A$ là hằng số.
+ Nếu phương trình $h'(x)=0$ không giải được thì ta tính đạo hàm cấp hai, ba đến khi nào xét dấu được thì ta dừng.

Ví dụ $1.$ Chứng minh bất đẳng thức :
                            $\displaystyle \sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4} \le 2                  \forall x \in [-1, 1]$
Lời giải :
Xét hàm số $f(x)=\displaystyle \sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4}$ trên $[-1, 1]$.
Ta có :
     $f'(x)=\displaystyle -\frac{1}{2\sqrt{1-x}}+ \frac{1}{2\sqrt{1+x}}+\frac{x}{2}=\frac{x\sqrt{1-x^2}+\sqrt{1-x}-\sqrt{1+x}}{2\sqrt{1-x^2}}$
     $f'(x)=0\Leftrightarrow x\sqrt{1-x^2}=\sqrt{1+x}-\sqrt{1-x}=0\Rightarrow x^2(1-x^2)=2-2\sqrt{1-x^2}           (1)$
Đặt $t=\sqrt{1-x^2}    (t \ge 0) \Rightarrow x^2=1-t^2$
PT $(1)\Leftrightarrow (1-t^2)t=2(1-t)\Leftrightarrow (1-t)(t^2+t-2)=0\Rightarrow t=1\Rightarrow x=0$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  & -1 & \; & \; & 0 & \; & \; &  1\\
\hline
f^\prime(x) & \;  & +  & \; & 0 & \; & - & 0 \\
\hline
\;  & \; & \; & \; & \;  2  \\
f(x) & \; & \nearrow  &  \; & \; & \; & \searrow & \;  \\
\quad &\sqrt{2}+\frac{1}{4} & \; & \; & \; & \; & \: &  \sqrt{2}+\frac{1}{4}
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(x) \le 2       \forall x \in [-1, 1]$.
Từ đó có điều phải chứng minh.

Ví dụ $2.$ Chứng minh bất đẳng thức :
                            $\displaystyle \arctan x -\frac{\pi}{4} \ge \ln (1+x^2) - \ln 2                  \forall x \in \left[ {\frac{1}{2}, 1} \right]$
Lời giải :
Bất đẳng thức cần chứng minh tương đương với :
$\displaystyle \arctan x -\ln (1+x^2) \ge  \frac{\pi}{4}- \ln 2$
Xét hàm số :  $f(x)=\arctan x -\ln (1+x^2)$  với   $x \in \left[ {\frac{1}{2}, 1} \right]$
Ta có :
               $\displaystyle f'(x)=\frac{1}{1+x^2}-\frac{2x}{1+x^2}=\frac{1-2x}{1+x^2}$
               $\displaystyle f'(x)=0\Leftrightarrow 1-2x=0\Leftrightarrow x=\frac{1}{2}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  & \frac{1}{2} & \; & \;  & \; & 1\\
\hline
f^\prime(x) & 0 & \;  & -  \\
\hline
\;  & \; & \; & \; & \; & \; &   \\
f(x) & \;  &  \; & \searrow & \; & \;  & \;  \\
\quad  & \; & \; & \; & \; &  \frac{\pi}{4}- \ln2
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(x) \ge \frac{\pi}{4}- \ln2       \forall x \in  \left[ {\frac{1}{2}, 1} \right]$.
Từ đó có điều phải chứng minh.

   Tuy nhiên, việc áp dụng đạo hàm để chứng minh một bất đẳng thức mà hàm $f(x)$ đã có sẵn trong bất đẳng thức thì chưa quá khó khăn. Vấn đề đặt ra ở đây là phải biết ứng dụng đạo hàm để chứng minh những bất đẳng thức mà ta tự tìm ra hàm số.
   Việc tìm ra một hàm số để xét là phải dựa vào đặc tính của từng bất đẳng thức. Để cụ thể ta xét các ví dụ sau :

Ví dụ $3.$ Cho các số dương $a, b, c$ thỏa mãn $a^2+b^2+c^2=1$
Chứng minh rằng : $\displaystyle \frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{b^2+a^2} \ge \frac{3\sqrt{3}}{2}$
Lời giải :
Từ giả thiết $a^2+b^2+c^2=1\Rightarrow \begin{cases}b^2+c^2=1-a^2 \\ a^2+c^2=1-b^2\\a^2+b^2=1-c^2 \\0< a, b, c <1\end{cases}$
Như vậy BĐT cần chứng minh tương đương với
       $\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}(a^2+b^2+c^2)$
Xét hàm số : $f(x)=\frac{x}{1-x^2}-\frac{3\sqrt{3}}{2}x^2    ,   0<x<1$
Ta sẽ chứng minh $f(x) \ge 0$. Thật vậy,
$f(x) \ge 0 \Leftrightarrow \frac { x }{ 1-{ x }^{ 2 } } \ge \frac { 3\sqrt { 3 }  }{ 2 }x^2 \Leftrightarrow \frac { 1 }{ x\left( 1-{ x }^{ 2 } \right)  } \ge \frac { 3\sqrt { 3 }  }{ 2 } \Leftrightarrow x\left( 1-{ x }^{ 2 } \right) \le \frac{ 2 }{ 3\sqrt { 3 }  } $
Đặt $g(x) = x-x^3$  với $x \in (0,1)$
       $g'(x)=1-3x^2;   g'(x)=0\Leftrightarrow x=\frac{1}{\sqrt{3}}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
x  &0 & \; & \; & \frac{1}{\sqrt{3}} & \; & \; &  1\\
\hline
g^\prime(x) & \;  & \; & +  & 0 \; & \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   \frac{ 2 }{ 3\sqrt { 3 }  }   \\
g(x) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad &0& \; & \; & \; & \; & \: &  0
\end{array}\]
Từ bảng biến thiên ta suy ra   $g(x) \le \frac{ 2 }{ 3\sqrt { 3 }  }  \Leftrightarrow f(x) \ge 0\Leftrightarrow \frac{x}{1-x^2} \ge \frac{3\sqrt{3}}{2}x^2$.
Lần lượt thay $x$ bởi $a, b, c$ ta được :
$\begin{cases}\frac{a}{1-a^2} \ge \frac{3\sqrt{3}}{2}a^2 \\ \frac{b}{1-b^2} \ge \frac{3\sqrt{3}}{2}b^2\\\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}c^2 \end{cases}\Rightarrow \frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} \ge \frac{3\sqrt{3}}{2}(a^2+b^2+c^2)$
Từ đây có điều phải chứng minh.

Ví dụ $4.$ Cho $\triangle ABC$ nhọn. Chứng minh rằng :
                     $\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 \pi  $
Lời giải :
Bất đẳng thức cần chứng minh tương đương với :
                     $\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 (A+B+C)  $                 
 Xét hàm số : $f(x)=\sin x + \tan x -2x $  với  $0<x<\frac{\pi}{2}$
Ta sẽ chứng minh $f(x) > 0$. Thật vậy,
         $f'(x)=\cos x + \frac{1}{\cos^2 x}-2$
 Vì $0<x<\frac{\pi}{2}\Rightarrow 0< \cos x < 1\Rightarrow \cos x > \cos^2 x$
 $\Rightarrow f'(x) > \cos^2 x + \frac{1}{\cos^2 x}-2 \underbrace{\ge}_{\text{BĐT Cô-si}} 2\sqrt{ \cos^2 x . \frac{1}{\cos^2 x}}-2 = 0        \forall x \in \left (0,\frac{\pi}{2} \right )$
 $\Rightarrow f'(x) >0  \forall x \in \left (0,\frac{\pi}{2} \right )\Rightarrow f(x)$ đồng biến trên $ \left (0,\frac{\pi}{2} \right )$
 $\Rightarrow f(x) > f(0)=0\Rightarrow \sin x + \tan x >2x$
Lần lượt thay $x$ bởi $a, b, c$ ta được :
$\begin{cases}\sin A + \tan A >2A \\ \sin B + \tan B >2B\\\sin C + \tan C >2C \end{cases}\Rightarrow\sin A + \sin B +\sin C +\tan A+\tan B + \tan C > 2 (A+B+C) $
Từ đây có điều phải chứng minh.

Ví dụ $5.$ Chứng minh rằng với mọi $x \in \mathbb{R}$ thì :
                                   $\sin x + \sin 2x + \sin 3x < \frac{3\sqrt{3}}{2}$
Lời giải :
Theo BĐT Bunhiacopsky ta có :
     $\sin x + \sin 2x + \sin 3x = 2\sin 2x \cos x + 2\cos x \sin x \le 2\sqrt{\sin^2 2x+ \cos^2 x}$
$\Rightarrow \sin x + \sin 2x + \sin 3x \le 2\sqrt{1-\cos^2 2x+ \frac{1+ \cos 2x}{2}}=2\sqrt{-\cos^2 2x+\frac{1}{2}\cos 2x +\frac{3}{2}}$
Đặt $t= \cos 2x$ với $-1 \le t \le 1$
Xét hàm : $f(t)=-t^2+\frac{1}{2}t+\frac{3}{2}$
                  $f'(t)=-2t+\frac{1}{2};           f'(t)=0\Leftrightarrow t=\frac{1}{4}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
t  &-1 & \; & \; & \frac{1}{4} & \; & \; &  1\\
\hline
f^\prime(t) & \;  & \; & +  & 0 \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   \frac{ 25 }{16 }   \\
f(t) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad &0& \; & \; & \; & \; & \: &  0
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(t) \le \max_{[-1, 1]} f(t) =\frac{ 25 }{16 }$.
$\Rightarrow \sin x + \sin 2x + \sin 3x \le 2\sqrt{f(t)}=\frac{5}{2}<\frac{3\sqrt{3}}{2}$
Vậy : $\sin x + \sin 2x + \sin 3x < \frac{3\sqrt{3}}{2}$ (đpcm).

Ví dụ $6.$ Chứng minh rằng với mọi $x \in  \mathbb{R}$ ta luôn có :
                                                       $\displaystyle 2^{\displaystyle|\sin x|}+ 2^{\displaystyle|\cos x|} \ge 3               (1)$
Lời giải :
Đặt $t=|\sin x|$, điều kiện : $0\le t \le 1\Rightarrow |\cos x|=\sqrt{1-t^2}$
BĐT $(1)$ trở thành :   $2^{\displaystyle t}+ 2^{\displaystyle \sqrt{1-t^2}} \ge 3 $
Xét hàm số : $f(t)=2^{\displaystyle t}+ 2^{\displaystyle \sqrt{1-t^2}}$  với $0\le t \le 1$
                        $f'(t)=\displaystyle 2^t\ln 2 - \displaystyle\frac{t}{\sqrt{1-t^2}}2^{\displaystyle \sqrt{1-t^2}}\ln 2=t.\ln 2 \left ( \frac{2^t}{t} -\frac{2^{\displaystyle \sqrt{1-t^2}}}{\sqrt{1-t^2}}\right )$
Lại xét hàm : $g(u)=\frac{2^u}{u} $ với $0\le u\le 1$
                        $g'(u)=\displaystyle \frac{u.2^u\ln 2-2^u}{u^2}=\frac{2^u}{u^2}\left ( u\ln 2 -1 \right )<0    \forall 0\le u\le 1$
$\Rightarrow g(u)$ là hàm giảm trên $[0; 1]$
$\Rightarrow f'(t)=0 \Leftrightarrow g(t)=g\left (\sqrt{1-t^2} \right )\Leftrightarrow t=\sqrt{1-t^2}\Leftrightarrow t=\frac{1}{\sqrt{2}}$
Bảng biến thiên :
\[\begin{array}{c|ccccccccc}
t  &0& \; & \; & \frac{1}{\sqrt{2}} & \; & \; &  1\\
\hline
f^\prime(t) & \;  & \; & +  & 0 \;  &  \; & -   \\
\hline
\;  & \; & \; & \; & \;   f_{\max}   \\
f(t) & \; & \; & \nearrow  &  \; & \; &  \searrow & \;  \\
\quad & 3 & \; & \; & \; & \; & \: &  3
\end{array}\]
Từ bảng biến thiên ta suy ra   $f(t) \ge 3     \forall t \in  \left[ {0, 1} \right]$.
Từ đó có điều phải chứng minh.

Ví dụ $7.$ (Đại học Khối $A-2012$) Cho các số thực $x, y, z$ thỏa mãn điều kiện $x+y+z=0$. Chứng minh rằng :
                         $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|}-\sqrt{6x^2+6y^2+6x^2} \ge 3$
Lời giải :
Trước hết ta sẽ chứng minh :  $3^t \ge t+1   \forall t \ge 0               (*)$
Xét hàm $f(t)=3^t-t-1$  trên $[0, +\infty)$
                $f'(t)=3^t\ln 3 -1 > 0            \forall t \ge 0 $
$\Rightarrow f(t)$ là hàm tăng trên $[0, +\infty)$
 $\Rightarrow f(t) \ge f(0)=0\Rightarrow  (*)$ được chứng minh.
 Áp dụng $(*)$, ta có : $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|} \ge 3 + |x-y|+|y-z|+|z-x|$
 Sử dụng BĐT quen thuộc  $|a|+|b| \ge |a+b|$, ta có :
$\left (|x-y|+|y-z|+|z-x| \right )^2=|x-y|^2+|y-z|^2+|z-x|^2+|x-y|\left ( |y-z|+|z-x|\right )+|y-z|\left ( |z-x|+|x-y| \right )+|z-x|\left (| x-y|+|y-z| \right ) \ge 2\left (|x-y|^2+|y-z|^2+|z-x|^2 \right )$
Do đó :
$|x-y|+|y-z|+|z-x| \ge \sqrt{2\left (|x-y|^2+|y-z|^2+|z-x|^2 \right )}=\sqrt{6x^2+6y^2+6x^2-2(x+y+z)^2}$
Mà $x+y+z=0$, suy ra $|x-y|+|y-z|+|z-x| \ge\sqrt{6x^2+6y^2+6x^2}$
 Suy ra  $3^{\displaystyle |x-y|}+3^{\displaystyle |y-z|}+3^{\displaystyle |z-x|}-\sqrt{6x^2+6y^2+6x^2} \ge 3$  (đpcm).

 BÀI TẬP ÁP DỤNG

 Bài $1.$
Chứng minh rằng : $\forall x >0$ thì $x- \displaystyle \frac{x^3}{6} < \sin x$

 Bài $2.$ Chứng minh rằng : $\forall x >1$ thì $x-1 > \ln x > 1 - \displaystyle \frac{1}{x}$

 Bài $3.$ Cho $0<a<b<\pi$. Chứng minh rằng :  $a\sin a - b\sin b >2\left ( \cos b - \cos a \right )$

 Bài $4.$ Cho $0 \le x \le \frac{\pi}{2}$. Chứng minh rằng : $x\cos x < \displaystyle \frac{\pi^2}{16} $

Bài $5.$ Cho hai số dương thỏa mãn $x^2+y^2 \le 2$. Chứng minh rằng : $x^3+y^3 \le 2$

 Bài $6.$ (Đại học khối $B-2012$) Cho các số thực $x, y, z$ thỏa mãn các điều kiện $x+y+z=0$ và $x^2+y^2+z^2=1$.
 Chứng minh rằng :  $x^5+y^5+z^5 \le \displaystyle \frac{5\sqrt{6}}{36}$

 Bài $7.$ (Đại học khối $D-2012$) Cho các số thực $x, y$ thỏa mãn điều kiện $(x-4)^2+(y-4)^2+2xy \le 32$.
 Chứng minh rằng :  $x^3+y^3+3(xy-1)(x+y-2) \ge \displaystyle \frac{17-5\sqrt{5}}{4}$.

Thẻ

Lượt xem

16942
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376