SỬ DỤNG BẤT ĐẲNG THỨC ĐỂ GIẢI PHƯƠNG TRÌNH VÔ TỈ


1.  PHƯƠNG PHÁP:
Một số phương trình được tạo ra từ dấu bằng của bất đẳng thức: $\left\{ \begin{array}
  A \geqslant m  \\
  B \leqslant m  \\
\end{array}  \right.$  nếu dấu bằng ở (1) và (2) cùng đạt được tại ${x_0}$  thì ${x_0}$  là nghiệm của phương trình $A = B$
Ta có : $\sqrt {1 + x}  + \sqrt {1 - x}  \leqslant 2$  Dấu bằng khi và chỉ khi $x = 0$ và $\sqrt {x + 1}  + \frac{1}{{\sqrt {x + 1} }} \geqslant 2$, dấu bằng khi và chỉ khi x=0. Vậy ta có phương trình: $\sqrt {1 - 2008x}  + \sqrt {1 + 2008x}  = \frac{1}{{\sqrt {x + 1} }} + \sqrt {1 + x} $
Đôi khi một số phương trình được tạo ra  từ ý tưởng : $\left\{ \begin{array}
  A \geqslant f\left( x \right)  \\
  B \leqslant f(x)  \\
\end{array}  \right.$  khi đó :  
                                                      $A = B \Leftrightarrow \left\{ \begin{array}
  A = f\left( x \right)  \\
  B = f\left( x \right)  \\
\end{array}  \right.$
Nếu ta đoán  trước được nghiệm thì việc dùng bất đẳng thức dễ dàng hơn, nhưng nếu nghiệm là vô tỉ việc không đoán nghiệm được, ta vẫn dùng bất đẳng thức để đánh giá nó.

Chú ý:
Khi giải phương trình vô tỷ bằng bất đẳng thức qua các phương trình hệ quả thì đến cuối bài toán phải thế nghiệm vào phương trình đầu để loại nghiệm ngoại lai.

Tóm tắt một vài bất đẳng thức cơ bản thường dùng để giải phương trình vô tỷ.
1. ${{\rm A}^{2n}} \geqslant 0, - {{\rm A}^{2n}} \leqslant 0\left( {n \in {{\rm N}^*}} \right)$ Dấu “=” xảy ra $ \Leftrightarrow $ A = 0
2. $\left| {{\rm A} = \left| { - {\rm A}} \right|} \right| \geqslant 0$ Dấu “=” xảy ra $ \Leftrightarrow $ A = 0
3. $\left| {\rm A} \right| \geqslant {\rm A}$. Dấu “=” xảy ra $ \Leftrightarrow {\rm A} \geqslant 0$
4. Bất đẳng thức Côsi với n số không âm: Nếu a1; a2; …., an không âm thì   a1 + a2 + … + an $ \geqslant n\sqrt[n]{{{a_1} + {a_2} + ...{a_n}}}$
Dấu “=” xảy ra $ \Leftrightarrow $ a1 = a2 = … an
5. Bất đẳng thức BCS với 2 bộ số (a1; a2; …., an); (b1; b2; …., bn) ta có:
${\left( {{a_1}{b_1} + {a_2}{b_2} + ....{a_n}{b_n}} \right)^2} \leqslant \left( {a_1^2 + a_2^2 + ...a_n^2} \right).\left( {b_1^2 + b_2^2 + ... + b_n^2} \right)$
Dấu “=” xảy ra $ \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = ... = \frac{{{a_n}}}{{{b_n}}}$. Quy ước nếu mẫu bằng 0 thì tử cũng phải bằng 0.

VÍ DỤ
Bài 1.
 
Giải phương trình:$\frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} + \sqrt x  = \sqrt {x + 9} $
Giải:
Đk $x \geqslant 0$
Ta có : ${\left( {\frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} + \sqrt x } \right)^2} \leqslant \left[ {{{\left( {2\sqrt 2 } \right)}^2} + x + 1} \right]\left[ {\frac{1}{{x + 1}} + {{\left( {\frac{{\sqrt x }}{{\sqrt {x + 1} }}} \right)}^2}} \right] = x + 9$
Dấu bằng $ \Leftrightarrow \frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} = \frac{1}{{\sqrt {x + 1} }} \Leftrightarrow x = \frac{1}{7}$

Bài 2.  
Giải phương trình : $13\sqrt {{x^2} - {x^4}}  + 9\sqrt {{x^2} + {x^4}}  = 16$
Giải:
Đk: $ - 1 \leqslant x \leqslant 1$
Biến đổi pt ta có : ${x^2}{\left( {13\sqrt {1 - {x^2}}  + 9\sqrt {1 + {x^2}} } \right)^2} = 256$
Áp dụng bất đẳng thức Bunhiacopxki: ${\left( {\sqrt {13} .\sqrt {13} .\sqrt {1 - {x^2}}  + 3.\sqrt 3 .\sqrt 3 \sqrt {1 + {x^2}} } \right)^2} \leqslant \left( {13 + 27} \right)\left( {13 - 13{x^2} + 3 + 3{x^2}} \right) = 40\left( {16 - 10{x^2}} \right)$Áp dụng bất đẳng thức Côsi: $10{x^2}\left( {16 - 10{x^2}} \right) \leqslant {\left( {\frac{{16}}{2}} \right)^2} = 64$
Dấu bằng $ \Leftrightarrow \left\{ \begin{array}
  \sqrt {1 - {x^2}}  = \frac{{\sqrt {1 + {x^2}} }}{3}  \\
  10{x^2} = 16 - 10{x^2}  \\
\end{array}  \right. \Leftrightarrow \left[ \begin{array}
  x = \frac{2}{{\sqrt 5 }}  \\
  x =  - \frac{2}{{\sqrt 5 }}  \\
\end{array}  \right.$

BÀI TẬP:
Bài 1.

$\sqrt {x - 3}  + \sqrt {5 - x}  = {x^2} - 8x + 18$
ĐK: $x \leqslant x \leqslant 5$
Ta có: ${x^2} - 8x + 18 = {\left( {x - 4} \right)^2} + 2 \geqslant Z$
${\left( {\sqrt {x - 3}  + \sqrt {5 - x} } \right)^2} = (x - 3) + (5 - x) + 2\sqrt {(x - 3).(5 - x)} $
                 $ = 2 + 2\sqrt {(x - 3).(5 - x)}  \leqslant 2 + (x - 3) + (5 - x) = 4$
$ \Rightarrow \sqrt {x - 3}  + \sqrt {5 - x}  \leqslant Z$
Do đó $\sqrt {x - 3}  + \sqrt {5 - x}  = {x^2} - 8x + 18$
$ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt {x - 3}  + \sqrt {5 - x}  = 2} \\
  {{x^2} - 8x + 18 = 2}
\end{array}} \right. \Leftrightarrow x = 4$
Vậy phương trình có nghiệm x = 4

Bài 2.
${x^2} + 2x + 4 = 3\sqrt {{x^3} + 4x} $
ĐK: $x \geqslant 0$
Áp dụng bất đẳng thức Côsi với 2 số không âm: $4x;{x^2} + 4$ có
$\begin{array}
  \sqrt {{x^3} + 4x}  = \frac{1}{2}\sqrt {4x({x^2} + 4)}  \leqslant \frac{1}{2}.\frac{{{x^2} + 4x + 4}}{2} = \frac{{{x^2} + 4x + 4}}{4}  \\
   \Rightarrow \frac{{{x^2} + 2x + 4}}{3} \leqslant \frac{{{x^2} + 4x + 4}}{4} \Rightarrow {(x - 2)^2} \leqslant 0  \\
\end{array} $
Ta có: ${(x - 2)^2} \geqslant 0,\forall x$ nên $x - 2 = 0 \Leftrightarrow x = 2$
Thử lại x = 2 là nghiệm của phương trình
Vậy phương trình đã cho có nghiệm x = 2

Bài 3.
 ${x^2} + 4 = 2\sqrt {{x^4} + 4}  + 2\sqrt {{x^4} - 4} (*)$
Để giải bài toán này, đầu tiên ta cần chứng minh bài toán phụ
$a + b \leqslant \sqrt {2({a^2} + {b^2})} $ (I)
Dấu “ = ” xảy ra $ \Leftrightarrow a = b \geqslant 0$
${x^4} + 4 \geqslant 2\sqrt {{x^2} - 4} $ (Bất Đẳng thức Côsi)
$ \Leftrightarrow {x^4} + 4 \geqslant 4{x^2}(1)$
Áp dụng bài toán phụ
$\begin{array}
  2\sqrt {{x^4} + 4}  + 2\sqrt {{x^4} - 4}  \leqslant \sqrt {2\left[ {4({x^4} + 4) + 4({x^4} - 4)} \right]}   \\
   \Leftrightarrow 2\sqrt {{x^4} + 4}  + 2\sqrt {{x^4} - 4}  \leqslant 4{x^2}(2)  \\
\end{array} $
(1), (2), (*) cho ta
$\begin{array}
  {x^4} + 4 = 2\sqrt {{x^4} + 4}  + 2\sqrt {{x^4} - 4}  = 4{x^2}  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{x^4} = 4} \\
  {2\sqrt {{x^4} + 4}  = 2\sqrt {{x^4} - 4} }
\end{array}} \right. \Leftrightarrow x \in \varphi   \\
\end{array} $
Vậy phương trình vô nghiệm.
(I)    chứng minh bài toán phụ:
    $a + b \leqslant \left| {a + b} \right| = \sqrt {{{(a + b)}^2}}  \leqslant \sqrt {{{(a + b)}^2} + {{(a - b)}^2}}  = \sqrt {2{{(a + b)}^2}} $

Bài 5.
$\sqrt {{x^2} + x}  + \sqrt {x - {x^2}}  = x + 1$
ĐK:  $\left\{ {\begin{array}{*{20}{c}}
  {{x^2} + x \geqslant 0} \\
  {x - {x^2} \geqslant 0}
\end{array} \Leftrightarrow 0 \leqslant x \leqslant 1} \right.$
Áp dụng bất đẳng thức Côsi cho 2 số $\sqrt {{x^2} + x} ;\sqrt {x - {x^2}} $ ta có:
$\sqrt {{x^2} + x}  + \sqrt {x - {x^2}}  = \sqrt {({x^2} + x).1}  + \sqrt {(x - {x^2})1}  \leqslant \frac{{{x^2} + x + 1}}{2} + \frac{{x - {x^2} + 1}}{2} = x + 1$
Dấu “=” xảy ra, do đó  $\left\{ {\begin{array}{*{20}{c}}
  {{x^2} + x = 1} \\
  {x - {x^2} = 1}
\end{array} \Leftrightarrow x = 0} \right.$
Thử lại x = 0 không là nghiệm của phương trình
Vậy phương trình đã cho vô nghiệm.

Bài 6.
$ - 16{x^4} + 72{x^3} - 81{x^2} + 28 - 16\left( {x - \sqrt {x - 2} } \right) = 0$
ĐK: x ≥ 2
Đặt $t = \sqrt {x - 2} ,t \geqslant 0$. Xét $f(t) = {t^2} - t + 2$ với $t \in \left[ {0; + \infty } \right)$
$\begin{array}
  4f(t) = 4{t^2} - 4t + 8 = {(2t - 1)^2} + 7 \geqslant 7  \\
   \Rightarrow f(t) \geqslant \frac{7}{4}  \\
  f(t) = \frac{7}{4} \Leftrightarrow t = \frac{1}{2} \in \left[ {0; + \infty } \right)  \\
\end{array} $
Vậy: $x - \sqrt {x - 2}  = x - 2 - \sqrt {x - 2}  + 2 = {t^2} - t + 2 \geqslant \frac{7}{4}($với $t = \sqrt {x - 2} )$
Dấu “=” xảy ra $ \Leftrightarrow \sqrt {x - 2}  = \frac{1}{2} \Leftrightarrow x = \frac{9}{4}$
Ta lại có: $\frac{{ - 16{x^4} + 72{x^3} - 81{x^2} + 28}}{{16}} = \frac{7}{4} - {\left( {x - \frac{9}{4}} \right)^2}{x^2} \leqslant \frac{7}{4}$
Dấu “=” xảy ra $ \Leftrightarrow x = \frac{9}{4}$ hay $x = 0$
Vậy $ - 16{x^4} + 72{x^3} - 81{x^2} + 28 - 16\left( {x - \sqrt {x - 2} } \right) = 0 \Leftrightarrow x = \frac{9}{4}$

Bài 7.
$\sqrt {{x^2} + 2{y^2} - 6x + 4y + 11}  + \sqrt {{x^3} + 3{y^2} + 2x + 6y + 4}  = 4$
Ta có:
    $\sqrt {{x^2} + 2{y^2} - 6x + 4y + 11}  + \sqrt {{x^2} + 3{y^2} + 2x + 6y + 4} $
  $\begin{array}
   = \sqrt {\left( {{x^2} - 6x + 9} \right) + \left( {2{y^2} + 4y + 2} \right)}  + \sqrt {\left( {{x^2} + 2x + 1} \right) + 3\left( {{y^2} + 2y + 1} \right)}   \\
   = \sqrt {{{(3 - x)}^2} + 2{{(y + 1)}^2}}  + \sqrt {{{(x + 1)}^2} + 3{{(y + 1)}^2}}   \\
   \geqslant \sqrt {{{(3 - x)}^2}}  + \sqrt {{{(x + 1)}^2}}  = \left| {3 - x} \right| + \left| {x + 1} \right|  \\
\end{array} $
Áp dụng tính chất $\left| {\rm A} \right| \geqslant {\rm A}$. Dấu “=” xảy ra $ \Leftrightarrow {\rm A} \geqslant 0$
Ta có:
$\left\{ {\begin{array}{*{20}{c}}
  {\left| {3 - x} \right| \geqslant 3 - x} \\
  {\left| {x + 1} \right| \geqslant x + 1}
\end{array} \Rightarrow } \right.\left| {3 - x} \right| + \left| {x + 1} \right| \geqslant 3 - x + x + 1 = 4$
Từ (1) suy ra:
$\sqrt {{x^2} + 2{y^2} - 6x + 4y + 11}  + \sqrt {{x^2} + 3{y^2} + 2x + 6y + 4}  \geqslant 4(2)$
Dấu đẳng thức xảy ra trong (2) khi và chỉ khi
$\left\{ {\begin{array}{*{20}{c}}
  {y + 1 = 0} \\
  {3 - x \geqslant 0} \\
  {x + 1 \geqslant 0}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {y =  - 1} \\
  { - 1 \leqslant x \leqslant 3}
\end{array}} \right.$
Vậy nghiệm của phương trình là
(x; y) = (x0; -1) với ${x_0} \in \left[ { - 1;3} \right]$

Bài
8.
$\sqrt[4]{{27{x^2} + 24x + \frac{{28}}{3}}} = 1 + \sqrt {\frac{{27}}{2}x + 6} $
Ta có:$\sqrt[4]{{27{x^2} + 24x + \frac{{28}}{3}}} = 1 + \sqrt {\frac{{27}}{3}x + 6} $
$ \Leftrightarrow 2\sqrt[4]{{\frac{{81{x^2} + 72x + 16}}{3} + 4}} = 1 + \sqrt {\frac{{3(9x + 4)}}{2}} $
$ \Leftrightarrow 2\sqrt[4]{{\frac{{{{(9x + 4)}^2}}}{3} + 4}} = 1 + \sqrt {\frac{{3{{(9x + 4)}^2}}}{2}} (1)$
ĐK: $9x + 4 \geqslant 0 \Leftrightarrow x \geqslant  - \frac{9}{4}$
Đặt: $9x + 4 = y \geqslant 0$. Khi đó (1) trở thành :
$2\sqrt[4]{{\frac{{{y^2}}}{3} + 4}} = 1 + \sqrt {\frac{{3y}}{2}} $
$ \Leftrightarrow 4\sqrt[4]{{\frac{{{y^2}}}{3} + 4}} = 1 + \frac{{3y}}{2} + \sqrt {6y} $
Sử dụng bất đẳng thức Côsi, ta có:
$\sqrt {6y}  \leqslant \frac{{6 + y}}{2}$
$\begin{array}
   \Rightarrow 4\sqrt {\frac{{{y^2}}}{3} + 4}  \leqslant 2y + 4  \\
   \Leftrightarrow 4(\frac{{{y^2}}}{3} + 4) \leqslant {(y + 2)^2}  \\
   \Leftrightarrow \frac{{{{(y - 6)}^2}}}{3} \leqslant 0  \\
\end{array} $
Mà ${(y - 6)^2} \geqslant 0$ nên $y - 6 = 0 \Leftrightarrow y = 6 \Rightarrow x = \frac{{y - 4}}{9} = \frac{2}{9}$ (thoả điều kiện)
Thử lại $x = \frac{2}{9}$ là nghiệm của phương trình
Vậy phương trình đã cho có nghiệm $x = \frac{2}{9}$

Bài
9.
2$\sqrt {7{x^3} - 11{x^2} + 25x - 12}  = {x^2} + 6x - 1$
Ta có:
 $\begin{array}
  2\sqrt {7{x^3} - 11{x^2} + 25x - 12}  = {x^2} + 6x - 1  \\
   \Leftrightarrow 2\sqrt {(7x - 4)({x^2} - x + 3)}  = {x^2} + 6x - 1  \\
\end{array} $
Đk: $(7x - 4)({x^2} - x - 3) \geqslant 0$ vì(${x^2} - x = 3 = {(x - \frac{1}{2})^2} + \frac{{11}}{4} > 0)$
$ \Leftrightarrow 7x - 4 \geqslant 0 \Leftrightarrow x \geqslant \frac{4}{7}$
Áp dụng bất đẳng thức Côsi cho 2 số âm $7x - 4,{x^2} - x + 3$
Ta có:
$(7x - 4) + ({x^2} - x + 3) \geqslant 2\sqrt {(7x - 4)({x^2} - x + 3)} $
$ \Rightarrow {x^2} - 6x - 1 \geqslant 2\sqrt {7{x^3} - 11x + 25x - 12} $
Dấu đẳng thức xảy ra khi :
$\begin{array}
  7x - 4 = {x^2} - x + 3  \\
   \Leftrightarrow {x^2} - 8x + 7 = 0  \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {x = 1} \\
  {x = 7}
\end{array}} \right.  \\
\end{array} $ (thoả điều kiện)
Thử lại $x = 1;x = 7$ là nghiệm
Vậy phương trình đã cho có nghiệm $x = 1;x = 7$

Bài
10.
 $\frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} + \sqrt x  = \sqrt {x + 9} $
Áp dụng bất đẳng thức Côsi cho 2 cặp: $2\sqrt 2 ;\sqrt {x + 1} $và $\frac{1}{{\sqrt {x + 1} }};\frac{{\sqrt x }}{{\sqrt {x + 1} }}$
Ta có:
${(\frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} + \sqrt x )^2} = {(2\sqrt 2 .\frac{1}{{\sqrt {x + 1} }} + \sqrt {x + 1} .\frac{{\sqrt x }}{{\sqrt {x + 1} }})^2} \leqslant (8 + x + 1)(\frac{1}{{x + 1}} + \frac{x}{{x + 1}}) = x + 9$
Do dấu: “=” xảy ra nên
$\frac{{2\sqrt 2 }}{{\sqrt {x + 1} }} = \frac{1}{{\sqrt {x + 1} }}:\frac{{\sqrt x }}{{\sqrt {x + 1} }} \Leftrightarrow x = \frac{1}{7}$ (thoã mãn điều kiện)
Vậy phương trình đã cho có nghiệm $x = \frac{1}{7}$

Bài 1
1.
$\sqrt {{x^2} + x + 1}  - \sqrt {{x^2} - x + 1}  - 4{x^2} + 4 = \frac{{32}}{{{x^2}\left( {2{x^2} + {3^2}} \right)}}$
Xét :$4{x^2} + \frac{{32}}{{{x^2}{{\left( {2{x^2} + 3} \right)}^2}}} = \frac{1}{2}\left[ {4{x^2} + \left( {2{x^2} + 3} \right) + \left( {2{x^2} + 3} \right) + \frac{{64}}{{{x^2}\left( {2{x^2} + 3} \right)}}} \right] - 3$
Áp dụng bất đẳng thức Côsi:
$4{x^2} + \frac{{32}}{{{x^2}{{\left( {2{x^2} + 3} \right)}^2}}} \geqslant \frac{1}{2}\left( {\sqrt[4]{{4{x^2}.{{\left( {2{x^2} + 3} \right)}^2}.\frac{{64}}{{{x^2}{{\left( {2{x^2} + 3} \right)}^2}}}}}} \right) - 3 = \frac{1}{2}4\sqrt[4]{{6.64}} - 3 = 5$
Suy ra vế trái $ = 4{x^2} + \frac{{32}}{{{x^2}{{\left( {2{x^2} + 3} \right)}^2}}} - 4 \geqslant 5 - 4 = 1$
Xét : $\begin{array}
  \sqrt {{x^2} + x + 1}  - \sqrt {{x^2} - x + 1}  < 1 \Leftrightarrow \sqrt {{x^2} + x + 1}  < 1 + \sqrt {{x^2} - x + 1}   \\
   \Leftrightarrow {x^2} + x + 1 < 1 + {x^2} - x + 1 + 2\sqrt {{x^2} - x + 1}   \\
   \Leftrightarrow 2x - 1 < 2\sqrt {{x^2} - x + 1}   \\
\end{array} $

Nếu $2x - 1 < 0 \Leftrightarrow x < \frac{1}{2} \Rightarrow (1)$luôn đúng
Nếu $2x - 1 \geqslant 0 \Leftrightarrow x > \frac{1}{2}$
(1) $ \Leftrightarrow 4{x^2} - 4x + 1 < 4({x^2} - x + 1) \Leftrightarrow 1 < 4$đúng
Vế trái < 1$ \leqslant $ vế phải. Vậy phương trình vô nghiệm


  Bài 1
3.
$\sqrt[4]{{1 - {x^2}}} + \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} = 3$
ĐK:
$ - 1 \leqslant x \leqslant 1$ áp dụng bất đẳng thức Côsi, ta có:
$\begin{array}
  \sqrt[4]{{1 - {x^2}}} = \sqrt[4]{{(1 - x)(1 + x)}} = \sqrt {\sqrt {1 - x} .\sqrt {1 + x} }  \leqslant \frac{{\sqrt {1 - x}  + 1}}{2}  \\
  \sqrt[4]{{1 - {x^2}}} = \sqrt {\sqrt {1 + x} .1}  \leqslant \frac{{\sqrt {1 + x}  + 1}}{2}  \\
\end{array} $
Cộng từng số bất đẳng thức cùng chiều ta có:
$\sqrt[4]{{1 - {x^2}}} + \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \leqslant 1 + \sqrt {1 - x}  + \sqrt {1 + x} $
Mặt khác, theo bất đẳng thức Côsi ta có:
$\begin{array}
  \sqrt {1 - x}  = \sqrt {(1 - x)1}  \leqslant \frac{{(1 - x) + 1}}{2} = \frac{{2 - x}}{2}  \\
  \sqrt {1 - x}  = \sqrt {(1 + x)1}  \leqslant \frac{{(1 + x) + 1}}{2} = \frac{{2 + x}}{2}  \\
   \Rightarrow 1 + \sqrt {1 - x}  + \sqrt {1 + x}  \leqslant 1 + \frac{{2 - x}}{2} + \frac{{2 + x}}{2} = 3  \\
\end{array} $
Vậy $\sqrt[4]{{1 - {x^2}}} + \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \leqslant 3$
Do đó phương trình có nghiệm $ \Leftrightarrow $ dấu bất đẳng thức trong (1) xảy ra.
$\left\{ {\begin{array}{*{20}{c}}
  {\sqrt {1 - x}  = \sqrt {1 + x} } \\
  {1 - x = 1} \\
  {1 + x = 1}
\end{array} \Leftrightarrow x = 0} \right.$ (Thoả điều kiện)
Vậy phương trình đã cho nghiệm x = 0

Thẻ

Lượt xem

26348
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376