ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN


Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác

1. Định tính tam giác:
a) Tam giác đều:

Đối với loại bài nhận dạng tam giác đều, ta chỉ cần giải bất đẳng thức lượng giác và chỉ ra điều kiện xảy ra dấu bằng của BĐT đó. Ta sẽ xét các ví dụ sau để thấy rõ điều đó.

Ví dụ 1:
CMR $\Delta ABC$đều khi thỏa: ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Lời giải:
Theo Bunhiacốpxki ta có:
${\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 3\left( {{m_a}^2 + {m_b}^2 + {m_c}^2} \right)$
$\begin{array}
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant \frac{9}{4}\left( {{a^2} + {b^2} + {c^2}} \right)  \\
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}\left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)  \\
\end{array} $
mà   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
$ \Rightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}.\frac{9}{4} = \frac{{81}}{4}{R^2}$
$ \Rightarrow $ ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều $ \Rightarrow $Đpcm.

Ví dụ 2:    
CMR nếu $\sin \frac{A}{2}\sin \frac{B}{2} = \frac{{\sqrt {ab} }}{{4c}}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\frac{{\sqrt {ab} }}{{4c}} \leqslant \frac{{a + b}}{{8c}} = \frac{{2R\left( {\sin A + \sin B} \right)}}{{2R.8\sin C}} = \frac{{2R.2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2}}}{{2R.8.2\sin \frac{C}{2}\cos \frac{C}{2}}} = \frac{{\cos \frac{{A - B}}{2}}}{{8\sin \frac{C}{2}}} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}$
$\begin{array}
   \Rightarrow \sin \frac{A}{2}\sin \frac{B}{2} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}  \\
   \Leftrightarrow 8\cos \frac{{A + B}}{2}\sin \frac{A}{2}\sin \frac{B}{2} \leqslant 1  \\
   \Leftrightarrow 4\cos \frac{{A + B}}{2}\left( {\cos \frac{{A - B}}{2} - \cos \frac{{A + B}}{2}} \right) - 1 \leqslant 0  \\
\end{array} $
$\begin{array}
   \Leftrightarrow 4{\cos ^2}\frac{{A + B}}{2} - 4\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 1 \geqslant 0  \\
   \Leftrightarrow {\left( {2\cos \frac{{A + B}}{2} - \cos \frac{{A - B}}{2}} \right)^2} + {\sin ^2}\frac{{A - B}}{2} \geqslant 0  \\
    \\
\end{array} $
$ \Rightarrow $ Đpcm.
    
Ví dụ 3:
CMR $\Delta ABC$đều khi nó thỏa: $2\left( {{h_a} + {h_b} + {h_c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
Lời giải:
Theo đề bài ta có:
$2.2p\left( {\frac{r}{a} + \frac{r}{b} + \frac{r}{c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
$\begin{array}
   \Leftrightarrow \frac{r}{a} + \frac{r}{b} + \frac{r}{c} = \frac{{\sqrt 3 }}{2}  \\
   \Leftrightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{{\sqrt 3 }}{2}  \\
\end{array} $
Ta lại có:  $\frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} \leqslant \frac{1}{4}\left( {\frac{1}{{\cot \frac{A}{2}}} + \frac{1}{{\cot \frac{B}{2}}}} \right) = \frac{1}{4}\left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)$
Tương tự ta có:
$\frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} = \frac{1}{4}\left( {\tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
$\frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{1}{4}\left( {\tan \frac{C}{2} + \tan \frac{A}{2}} \right)$
$\begin{array}
   \Rightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right)  \\
   \Rightarrow \frac{{\sqrt 3 }}{2} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right) \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu thỏa $S = 3Rr\frac{{\sqrt 3 }}{2}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\begin{array}
  S = 2{R^2}\sin A\sin B\sin C = 2.{R^2}.2.2.2.\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
   = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}.4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = r4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
\end{array} $
$ \leqslant r4R\frac{{3\sqrt 3 }}{8} = \frac{{3\sqrt 3 }}{2}Rr$
$ \Rightarrow $ Đpcm.

Ví dụ 5:
CMR $\Delta ABC$đều khi nó thỏa ${m_a}{m_b}{m_c} = pS$
Lời giải:
Ta có:  ${m_a}^2 = \frac{1}{4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) = \frac{1}{4}\left( {{b^2} + {c^2} - 2bc\cos A} \right) \geqslant \frac{1}{2}bc\left( {1 + \cos A} \right) = bc{\cos ^2}\frac{A}{2}$

$\begin{array}
  \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \Rightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}  \\
   \Rightarrow {\cos ^2}A = \frac{{{b^2} + {c^2} - {a^2} + 2bc}}{{4bc}} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{4bc}} = \frac{{p\left( {p - a} \right)}}{{bc}}  \\
   \Rightarrow {m_a} \geqslant \sqrt {p\left( {p - a} \right)}   \\
\end{array} $
Tương tự ta có:
$\begin{array}
  \left\{ \begin{array}
  {m_b} \geqslant \sqrt {p\left( {p - b} \right)}   \\
  {m_c} \geqslant \sqrt {p\left( {p - c} \right)}   \\
\end{array}  \right.  \\
   \Rightarrow {m_a}{m_b}{m_c} \geqslant p\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = pS  \\
\end{array} $
$ \Rightarrow $ Đpcm.

b) Tam giác cân:
Đối với dạng bài nhận dạng tam giác cân, ta cần phải chỉ ra điều kiện xảy ra dấu bằng của bất đẳng thức là khi 2 biến bằng nhau và khác biến thứ ba. Ta xét các ví dụ sau:

Ví dụ 1:
CMR $\Delta ABC$cân khi nó thỏa điều kiện ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2}$ và nhọn.
Lời giải:
Ta có: $\tan A + \tan B = \frac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \frac{{2\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right) + \cos \left( {A - B} \right)}} = \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}}$
Vì $\cos \left( {A - B} \right) \leqslant 1 \Rightarrow \cos \left( {A - B} \right) - \cos C \leqslant 1 - \cos C = 2{\sin ^2}\frac{C}{2}$
$\begin{array}
   \Rightarrow \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}} \geqslant \frac{{2\sin C}}{{2{{\sin }^2}\frac{C}{2}}} = \frac{{4\sin \frac{C}{2}\cos \frac{C}{2}}}{{2{{\sin }^2}\frac{C}{2}}} = 2\cot \frac{C}{2} = 2\tan \frac{{A + B}}{2}  \\
   \Rightarrow \tan A + \tan B \geqslant 2\tan \frac{{A + B}}{2}  \\
\end{array} $
Từ giả thiết: ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2} \leqslant 2{\left( {\frac{{\tan A + \tan B}}{2}} \right)^2}$
$\begin{array}
   \Leftrightarrow 2\left( {{{\tan }^2}A + {{\tan }^2}B} \right) \leqslant {\tan ^2}A + {\tan ^2}B + 2\tan A\tan B  \\
   \Leftrightarrow {\left( {\tan A - \tan B} \right)^2} \leqslant 0  \\
   \Leftrightarrow A = B  \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 2:
CMR $\Delta ABC$cân khi thỏa ${h_a} = \sqrt {bc} \cos \frac{A}{2}$
Lời giải:
Trong mọi tam giác ta luôn có: ${h_a} \leqslant {l_a} = \frac{{2bc}}{{b + c}}\cos \frac{A}{2}$
Mà $b + c \geqslant 2\sqrt {bc}  \Rightarrow \frac{{2bc}}{{b + c}} \leqslant \frac{{bc}}{{\sqrt {bc} }} = \sqrt {bc} $
$ \Rightarrow \frac{{2bc}}{{b + c}}\cos \frac{A}{2} \leqslant \sqrt {bc} \cos \frac{A}{2} \Rightarrow {h_a} \leqslant \sqrt {bc} \cos \frac{A}{2}$
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 3:
CMR nếu thỏa $r + {r_a} = 4R\sin \frac{B}{2}$ thì $\Delta ABC$cân.
Lời giải:
Ta có:
$\begin{array}
  r + {r_a} = \left( {p - b} \right)\tan \frac{b}{2} + p\tan \frac{B}{2} = \left( {2p - b} \right)\tan \frac{B}{2} = \left( {a + c} \right)\tan \frac{B}{2} = 2R\left( {\sin A + \sin C} \right)\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}}  \\
   = 4R\sin \frac{{A + C}}{2}\cos \frac{{A + C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\cos \frac{B}{2}\cos \frac{{A - C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\sin \frac{B}{2}\cos \frac{{A - C}}{2} \leqslant 4R\sin \frac{B}{2}  \\
   \Rightarrow r + {r_a} \leqslant 4R\sin \frac{B}{2}  \\
\end{array} $
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu $S = \frac{1}{4}\left( {{a^2} + {b^2}} \right)$ thì $\Delta ABC$cân.
Lời giải:
Ta có: ${a^2} + {b^2} \geqslant 2ab \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant \frac{1}{2}ab \geqslant \frac{1}{2}ab\sin C = S$
$ \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant S \Rightarrow $$\Delta ABC$cân nếu thỏa đk đề bài.

Ví dụ 5:
CMR $\Delta ABC$cân khi thỏa $2\cos A + \cos B + \cos C = \frac{9}{4}$
Lời giải:
Ta có:
$2\cos A + \cos B + \cos C = 2\left( {1 - 2{{\sin }^2}\frac{A}{2}} \right) + 2\cos \frac{{B + C}}{2}\cos \frac{{B - C}}{2}$
  $\begin{array}
   =  - 4{\sin ^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4} =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} + \frac{1}{4}{\cos ^2}\frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4}  \\
   =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} - \frac{1}{4}{\sin ^2}\frac{{B - C}}{2} + \frac{9}{4} \leqslant \frac{9}{4}  \\
\end{array} $
Đẳng thức xảy ra khi B=C $ \Rightarrow $ Đpcm.

c) Tam giác vuông:
Đối với dạng bài tập nhận dạng tam giác vuông, ta ít khi cần dùng đến các BĐT lượng giác mà thường là chỉ cần sử dụng các phương pháp biến đổi tương đương là được.    

Ví dụ 1:
Cho tam giác ABC có các góc thỏa mãn hệ thức $3\left( {\cos B + 2\sin C} \right) + 4\left( {\sin B + 2\cos C} \right) = 15$
Chứng minh $\vartriangle $ABC vuông.
Lời giải:
Theo Bunhiacốpxki ta có:
$\left\{ \begin{array}
  3\cos B + 4\sin B \leqslant \sqrt {\left( {{3^2} + {4^2}} \right)\left( {{{\cos }^2}B + {{\sin }^2}B} \right)}  = 5  \\
  6\sin C + 8\cos C \leqslant \sqrt {\left( {{6^2} + {8^2}} \right)\left( {{{\sin }^2}C + {{\cos }^2}C} \right)}  = 10  \\
\end{array}  \right.$
$ \Rightarrow 3\cos B + 4\sin B + 6\sin C + 8\cos C \leqslant 15$
Đẳng thức xảy ra khi và chỉ khi:
$\left\{ \begin{array}
  3\cos B + 4\sin B = 5  \\
  6\sin C + 8\cos C = 10  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \frac{{\cos B}}{3} = \frac{{\sin B}}{4}  \\
  \frac{{\sin C}}{6} = \frac{{\cos C}}{8}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \tan B = \frac{4}{3}  \\
  \cot C = \frac{4}{3}  \\
\end{array}  \right. \Leftrightarrow \tan B = \cot C \Leftrightarrow B + C = \frac{\pi }{2}$
Vậy tam giác ABC vuông tại A.

2. Cực trị lượng giác:
Đây là một lĩnh vực khó, đòi hỏi người giải cần phải tự mình sử dụng khéo léo các bất đẳng thức lượng giác phù hợp cũng như phải có một vốn kiến thức khá lớn về bất đẳng thức để có thể tìm ra đáp án của bài toán.

Ví dụ 1:
Tìm giá trị nhỏ nhất của hàm số:
$f(x,y) = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Với a,b,c,d là các hằng số dương.
Lời giải:
Đặt $f(x,y) = a{f_1} + b{f_2}$ với ${f_1} = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}}$ và ${f_2} = \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Ta có:  $c + d = c\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + d\left( {{{\sin }^2}y + {{\cos }^2}y} \right)$                             
Do đó: $\left( {c + d} \right){f_1} = \left[ {\left( {c{{\sin }^2}x + d{{\cos }^2}y} \right) + \left( {c{{\cos }^2}x + d{{\sin }^2}y} \right)} \right]\left[ {\frac{{{{\sin }^4}x}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{{{\cos }^4}x}}{{c{{\cos }^2}x + d{{\sin }^2}y}}} \right]$
$ \geqslant {\left( {\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} \frac{{{{\sin }^2}x}}{{\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} }} + \sqrt {c{{\cos }^2}x + d{{\sin }^2}y} \frac{{{{\cos }^2}x}}{{\sqrt {c{{\cos }^2}x + d{{\sin }^2}y} }}} \right)^2} = 1$
$ \Rightarrow {f_1} \geqslant \frac{1}{{c + d}}$. Tương tự $ \Rightarrow {f_2} \geqslant \frac{1}{{c + d}}$. Vậy $f(x,y) = a{f_1} + b{f_2} \geqslant \frac{{a + b}}{{c + d}}$

Ví dụ 2:
Tìm giá trị nhỏ nhất của biểu thức: $P = \cos 3A + \cos 3B - \cos 3C$
Lời giải:
Ta có: $\cos 3C = \cos 3\left[ {\pi  - \left( {A + B} \right)} \right] = \cos \left[ {3\pi  - 3\left( {A - B} \right)} \right] =  - \cos 3\left( {A + B} \right)$ nên
$\begin{array}
  P = \cos 3A + \cos 3B + \cos 3\left( {A + B} \right) = 2\cos 3\left( {\frac{{A + B}}{2}} \right)\cos 3\left( {\frac{{A - B}}{2}} \right) + 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) - 1  \\
   \Rightarrow P + \frac{3}{2} = 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) + 2\cos \left( {\frac{{A - B}}{2}} \right)\cos 3\left( {\frac{{A + B}}{2}} \right) + \frac{1}{2} = f(x,y)  \\
\end{array} $
$\Delta \prime  = {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) - 1 \leqslant 0 \Rightarrow P \geqslant  - \frac{3}{2}$
$\begin{array}
  P =  - \frac{3}{2} \Leftrightarrow \left\{ \begin{array}
  \Delta \prime  = 0  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) = 1  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \cos 3A =  - \frac{1}{2}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \left[ \begin{array}
  A = \frac{{2\pi }}{9}  \\
  A = \frac{{4\pi }}{9}  \\
\end{array}  \right.  \\
\end{array}  \right.  \\
\end{array} $
Vậy ${P_{\min }} =  -  - \frac{3}{2} \Leftrightarrow \left[ \begin{array}
  A = B = \frac{{2\pi }}{9},C = \frac{{5\pi }}{9}  \\
  A = B = \frac{{4\pi }}{9},C = \frac{\pi }{9}  \\
\end{array}  \right.$

Ví dụ 3:
Tìm giá trị lớn nhất của biểu thức: $P = \frac{{{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C}}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}}$
Lời giải:
Ta có:
$P = \frac{3}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}} - 1$
$\begin{array}
   = \frac{3}{{3 - \left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)}} - 1  \\
   \leqslant \frac{3}{{3 - \frac{9}{4}}} - 1 = 3  \\
\end{array} $
Do đó ${P_{\max }} = 3 \Leftrightarrow \Delta ABC$đều.

Ví dụ 4:
Tìm giá trị lớn nhất, nhỏ nhất của $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x} $
Lời giải:
Điều kiện: $\sin x \geqslant 0,\cos x \geqslant 0$
Ta có: $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \leqslant \sqrt[4]{{\sin x}} \leqslant 1$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}
  \sin x = 1  \\
  \cos x = 0  \\
\end{array}  \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi $
Mặt khác $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \geqslant  - \cos x \geqslant  - 1$
Dấu bằng xảy ra $\left\{ \begin{array}
  \sin x = 0  \\
  \cos x = 1  \\
\end{array}  \right. \Leftrightarrow x = 2k\pi $
Vậy $\left\{ \begin{array}
  {y_{\max }} = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi   \\
  {y_{\min }} =  - 1 \Leftrightarrow x = 2k\pi   \\
\end{array}  \right.$

Ví dụ 5:
Cho hàm số $y = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$. Hãy tìm Max $y$trên miền xác định của nó.
Lời giải:
Vì $\sin x$và $\cos x$ không đồng thời bằng 1 nên $y$ xác định trên R.
${Y_0}$ thuộc miền giá trị của hàm số khi và chỉ khi ${Y_0} = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$ có nghiệm.
$ \Leftrightarrow {Y_0}\sin x + \left( {{Y_0} - 1} \right)\cos x = 2{Y_0} + 2$ có nghiệm.
$\begin{array}
  {\left( {2{Y_0} + 2} \right)^2} \leqslant {Y_0}^2 + {\left( {{Y_0} - 1} \right)^2}  \\
   \Leftrightarrow 2{Y_0}^2 + 10{Y_0} + 3 \leqslant 0  \\
   \Leftrightarrow \frac{{ - 5 - \sqrt {19} }}{2} \leqslant {Y_0} \leqslant \frac{{ - 5 + \sqrt {19} }}{2}  \\
\end{array} $
Vậy ${y_{\max }} = \frac{{ - 5 + \sqrt {19} }}{2}$

Bài tập rèn luyện
CMR $\Delta ABC$đều khi nó thỏa mãn một trong các đẳng thức sau:
1)    $\cos A\cos B + \cos B\cos C + \cos C\cos A = \frac{3}{4}$
2)    $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$
3)    $\frac{1}{{\sin 2A}} + \frac{1}{{\sin 2B}} + \frac{1}{{\sin 2C}} = \frac{{\sqrt 3 }}{2} + \frac{1}{2}\tan A\tan B\tan C$
4)    ${\left( {\frac{{{a^2} + {b^2} + {c^2}}}{{\cot A + \cot B + \cot C}}} \right)^2} = \frac{{{a^2}{b^2}{c^2}}}{{\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}}}$
5)    $\frac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \frac{1}{2}$
6)    ${l_a}{l_b}{l_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
7)    ${m_a}{m_b}{m_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
8)    $bc\cot \frac{A}{2} + ca\cot \frac{B}{2} + ab\cot \frac{C}{2} = 12S$
9)    $\left( {1 + \frac{1}{{\sin A}}} \right)\left( {1 + \frac{1}{{\sin B}}} \right)\left( {1 + \frac{1}{{\sin C}}} \right) = 5 + \frac{{26\sqrt 3 }}{9}$

Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376