A. CHỨNG MINH ĐẲNG THỨC

Ví dụ $1.$
Cho $a, b, c$ là các số thực sao cho $(ab+1)(bc+1)(ca+1) \ne 0$
Chứng minh rằng :
$\displaystyle \frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}= \frac{a-b}{1+ab}.\frac{b-c}{1+bc}.\frac{c-a}{1+ca}                (1)$
Lời giải :
Đặt $a = \tan x,          b=\tan y,             c=\tan z$,       khi đó:
Vế trái $(1) = \frac{\tan x-\tan y}{1+\tan x \tan y}+\frac{\tan y-\tan z}{1+\tan y \tan z}+\frac{\tan z-\tan x}{1+\tan z \tan x}$
                    $=\tan (x-y) + \tan (y-z)+ \tan (z-x)$
Bây giờ ta sẽ chứng minh bài toán phụ sau :
Nếu $\alpha, \beta, \gamma$ là các góc thỏa mãn điều kiện  $\alpha+ \beta+ \gamma=k\pi      (k\in \mathbb{Z})$ thì
              $\tan \alpha+ \tan \beta+ \tan \gamma=\tan \alpha\tan \beta \tan \gamma$
Thật vậy,
Từ điều kiện $\alpha+ \beta+ \gamma=k\pi \Rightarrow \alpha+ \beta=- \gamma + k\pi$
$\Rightarrow \tan (\alpha+ \beta)=- \tan \gamma\Rightarrow \frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=- \tan \gamma\Rightarrow \tan \alpha+\tan \beta=-\tan \gamma+\tan \alpha\tan \beta\tan \gamma$
$\Rightarrow \tan \alpha+ \tan \beta+ \tan \gamma=\tan \alpha\tan \beta \tan \gamma$.
Như vậy ta đã chứng minh xong bài toán phụ.
Áp dụng trong trường hợp $(x-y)+(y-z)+(z-x)=0$ thì ta có :
$\tan (x-y) + \tan (y-z)+ \tan (z-x)=\tan (x-y) \tan (y-z) \tan (z-x)$
Quay trở lại phép đặt ẩn phụ thì hiển nhiên thấy
$\displaystyle \frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ca}= \frac{a-b}{1+ab}.\frac{b-c}{1+bc}.\frac{c-a}{1+ca}$
Và ta có ĐPCM.

Ví dụ $2.$ Cho $x, y, z$ là các số thực thỏa mãn $x+y+z=xyz$. Chứng minh rằng :
$x(y^2-1)(z^2-1)+y(z^2-1)(x^2-1)+z(x^2-1)(y^2-1)=4xyz           (2)$
Lời giải :
Xét hai khả năng sau :
i) Nếu $xy=0$ suy ra ít nhất một trong ba số $x, y, z$ bằng $0$.
Giả sử $x=0$, khi đó từ giả thiết suy ra $y+z=0$ hay $y=-z$
Lúc này :
Vế trái $(2)=y(1-z^2)+z(1-y^2)=0$  do $y=-z$
còn hiển nhiên Vế phải $(2)=0$.
Vậy đẳng thức $(2)$ đúng trong trường hợp này.
ii) Nếu $xyz \ne 0$. Khi ấy đưa đẳng thức cần chứng minh về dạng tương đương sau :
$\displaystyle \frac{y^2-1}{2y}. \frac{z^2-1}{2z}+ \frac{z^2-1}{2z}. \frac{x^2-1}{2x}+ \frac{x^2-1}{2x}. \frac{y^2-1}{2y}=1          (*)$
Đặt $x=\tan a,     y=\tan b,             z=\tan c$.
Từ giả thiết ban đầu suy ra $\tan a+ \tan b + \tan c = \tan a \tan b \tan c$
$\Rightarrow -\tan a (1- \tan b\tan c) = \tan b +\tan c             $
Chú ý rằng : $1- \tan b\tan c \ne 0$. Thật vậy nếu $1- \tan b\tan c=0\Rightarrow yz=1$
Do $x+y+z=xyz\Rightarrow y+z=0\Rightarrow \begin{cases}y=-z \\ yz=1 \end{cases}\Rightarrow -z^2=1$ đây là điều không thể xảy ra.
Với điều kiện $1- \tan b\tan c \ne 0$, ta suy ra
$-\tan a = \frac{\tan b +\tan c }{1- \tan b\tan c}=\tan (b+c)\Rightarrow a+b+c=k\pi,      (k \in \mathbb{Z})$
$\Rightarrow 2a+2b+2c=2k\pi\Rightarrow \cot 2a=-\cot(2b+2c)=-\frac{1-\cot2b \cot2c}{\cot2b+\cot2c}$
$\Rightarrow \cot 2a \cot 2b+\cot2b \cot2c+\cot2c \cot2a=1                    (**)$
Mặt khác, với $\phi$ là góc bất kỳ thì ta có công thức :
$\cot 2\phi = \frac{1}{\tan 2\phi}=\frac{1-\tan^2 \phi}{2\tan \phi}$
Do đó từ $(**)$ ta suy ra :
      $\displaystyle\frac{1-\tan^2 a}{2\tan a}. \frac{1-\tan^2b}{2\tan b}+ \frac{1-\tan^2 b}{2\tan b}. \frac{1-\tan^2 c}{2\tan c}+\frac{1-\tan^2 c}{2\tan c}. \frac{1-\tan^2 a}{2\tan a}=1$
$\Leftrightarrow \displaystyle \frac{y^2-1}{2y}. \frac{z^2-1}{2z}+ \frac{z^2-1}{2z}. \frac{x^2-1}{2x}+ \frac{x^2-1}{2x}. \frac{y^2-1}{2y}=1$
Đây chính là đẳng thức $(*)$ tương đương với đẳng thức $(2)$ cần chứng minh.

Ví dụ $3.$ Chứng minh rằng phương trình $x^3-3x+1=0$ có ba nghiệm $x_1<x_2<x_3$, thỏa mãn hệ thức : $x_3^2=2+x_2$.
Lời giải :
Đặt $f(x)=x^3-3x+1$. Ta có : $f(-2)<0; f(-1)>0; f(1)<0; f(2) > 0$.
Dựa vào tính liên tục của $f(x)$, suy ra phương trình :
$f(x)=x^3-3x+1$ có ba nghiệm $x_1, x_2, x_3$ thỏa mãn :
$-2<x_1<-1<x_2<1<x_3<2                 (1)$
Từ $(1)$ suy ra mọi nghiệm của phương trình đều thỏa mãn $|x| <2$
Vì thế có thể đặt $x=2\cos \alpha,     0 \le \alpha \le \pi$.
Khi đó    $x^3-3x+1=0\Leftrightarrow 8\cos^3 \alpha-6\cos \alpha+1=0$
         $\Leftrightarrow 2\cos 3\alpha = -1 \Leftrightarrow \cos 3 \alpha = -\frac{1}{2}                  (2)$
dễ dàng suy ra với $0 \le \alpha \le \pi$ thì có ba góc thỏa mãn $(2)$, đó là
$\begin{cases}\alpha_1=\frac{8\pi}{9}\\\alpha_2=\frac{4\pi}{9}\\\alpha_3=\frac{2\pi}{9} \end{cases}\Rightarrow \begin{cases}x_1=2\cos \alpha_1=2\cos \frac{8\pi}{9}\\x_2=2\cos \alpha_2=2\cos \frac{4\pi}{9}\\x_3=2\cos \alpha_3=2\cos \frac{2\pi}{9} \end{cases}$.
Rõ ràng,
$x_3^2=4\cos^2 \frac{2\pi}{9}=2\left ( 1+\cos \frac{4\pi}{9} \right )=2+2\cos \frac{4\pi}{9}=2+x_2$.
Đó là ĐPCM.


B. CHỨNG MINH BẤT ĐẲNG THỨC

Ví dụ $4.$ Cho $x^2+y^2=1$. Chứng minh rằng :
$\left| {16(x^5+y^5)-20(x^3+y^3)+5(x+y)} \right| \le \sqrt{2}$
Lời giải :
Do $x^2+y^2=1$, nên đặt $x= \sin \psi,  y=\cos \psi$.
Ta có :
     $\sin 5\psi = \sin (3\psi + 2\psi)=\sin 3\psi\cos 2\psi + \sin 2\psi\cos 3\psi$
$=\left ( 3\sin \psi-4\sin^3\psi \right )\left ( 1-2\sin^2 \psi \right )+2\sin \psi\cos \psi\left ( 4\cos^3 \psi-3\cos \psi \right )$
$=\left ( 3\sin \psi-4\sin^3\psi \right )\left ( 1-2\sin^2 \psi \right )+2\sin \psi\cos^2 \psi\left (4\cos^2 \psi-3 \right )$
$=\left ( 3\sin \psi-4\sin^3\psi \right )\left ( 1-2\sin^2 \psi \right )+2\sin \psi(1-\sin^2 \psi)\left (1-4\sin^2 \psi \right )$
$=16\sin^ \psi-20\sin^3\psi+5\sin \psi$
$=16x^5-20x^3+5x$
Làm tương tự ta cũng có :
$\cos 5\psi = 16y^5-20y^3+5y$
Vậy,
$\left| {16(x^5+y^5)-20(x^3+y^3)+5(x+y)} \right| =\left| {\sin 5\psi + \cos 5\psi} \right|=\sqrt{2}\left| {\sin \left (5\psi+\frac{\pi}{4}  \right )} \right|$.
Mặt khác , $\left| {\sin \left (5\psi+\frac{\pi}{4}  \right )} \right| \le 1,       \forall \psi$.
Từ đây ta có ĐPCM.

Ví dụ $5.$ Cho $0<x, y, z <1$ và $xy+yz+zx=1$. Chứng minh rằng :
$\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2} \ge \frac{3\sqrt{3}}{2}$
Lời giải :
Đặt $x=\tan a,        y=\tan b,          z=\tan c$.
Do $x, y, z \in (0, 1)\Rightarrow a, b, c \in \left (0, \frac{\pi}{4} \right )$.
Từ giả thiết, ta có :
$\tan a\tan b+ \tan b\tan c+ \tan c\tan a=1$.
Bằng cách sử dụng các kỹ thuật ở các ví dụ trước, ta suy ra $a+b+c=\frac{\pi}{2}$, do $a, b, c \in \left (0, \frac{\pi}{4} \right )$
 Đặt $S = \frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}$ thì
      $2S=\frac{2\tan a}{1-\tan^2a}+\frac{\tan b}{1-\tan^2b}+\frac{\tan c}{1-\tan^2c}=\tan 2a + \tan 2b + \tan 2c$
Do $a+b+c=\frac{\pi}{2}\Rightarrow 2a+2b+2c=\pi$
$\Rightarrow \tan 2a + \tan 2b + \tan 2c=\tan 2a \tan 2b\tan 2c                 (1)$
Do $a, b, c \in \left (0, \frac{\pi}{4} \right )\Rightarrow \tan 2a , \tan 2b , \tan 2c$ là các số dương.
Theo bất đẳng thức Cô-si , ta có :
$2S \ge 3\sqrt[]{ \tan 2a \tan 2b \tan 2c}$  và theo $(1)$ ta được :
$2S \ge 3\sqrt[3]{ \tan 2a + \tan 2b + \tan 2c}$,  tức là $2S \ge 3\sqrt[]{2S}$
$\Rightarrow 8S^3 \ge 27.2S\Rightarrow S^2 \ge \frac{27}{4}\Rightarrow S \ge \frac{3\sqrt{3}}{2}$  (do $S>0$).
Vậy, $\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2} \ge \frac{3\sqrt{3}}{2}$ (đpcm).

Ví dụ $6.$ (Đại học Khối $A-2009$)
Cho $x, y, z$ là các số dương thỏa mãn $x(x+y+z)=3yz$.
Chứng minh rằng :
$(x+y)^3+(x+z)^3+3(x+y)(y+z)(z+x) \le 5(y+z)^3$
Lời giải :
Đặt $a=x+y,          b=y+z,          c=z+x$      thì $a, b, c$ là các số dương và
$x=\frac{b+c-a}{2};            y=\frac{c+a-b}{2};           z=\frac{a+b-c}{2}$.
Thay điều này vào giả thiết ban đầu và rút gọn, ta được  $a^2=b^2+c^2-bc$
Ta phải chứng minh : $b^3+c^3 +3abc \le 5a^3            (*)$
Nhận thấy $a, b, c$ thỏa mãn điều kiện để trở thành ba cạnh của một tam giác $ABC$ có $BC=a, AC=b, AB=c$, và hệ thức $a^2=b^2+c^2-bc$ suy ra $\cos A = \frac{b^2+c^2-a^2}{2bc}=\frac{bc}{2bc}=\frac{1}{2}\Rightarrow \widehat A=60^\circ$.
Ta có BĐT $(*)\Leftrightarrow (b+c)(b^2-bc+c^2)+3abc \le 5a^3$
                           $\Leftrightarrow a^2(b+c) +3abc\le 5a^3$
                           $\Leftrightarrow \frac{b}{a}+\frac{c}{a}+3.\frac{b}{a}.\frac{c}{a} \le 5$
Theo định lý hàm số sin và giả thiết $\sin A=\sin 60^\circ=\frac{\sqrt{3}}{2}$ thì điều này
                           $\Leftrightarrow 2\sqrt{3}(\sin B + \sin C) +12\sin B \sin C \le 15$
Mặt khác ta có :
$\sin B + \sin C = 2\sin \frac{B+C}{2}\cos \frac{B-C}{2} \le 2\sin \frac{B+C}{2}=2\sin \frac{120^\circ}{2}=\sqrt{3} $
$\sin B \sin C \le \frac{(\sin B + \sin C)^2}{4} \le \frac{3}{4}$
Ta suy ra đpcm.
Dấu bằng xảy ra $\Leftrightarrow a=b=c\Leftrightarrow x=y=z$.


C. GIẢI PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH

Ví dụ $7.$ Giải phương trình $4x^3-3x=\sqrt{1-x^2}$
Lời giải :
Điều kiện : $|x| \le 1$.
Đặt $x=\cos t,            t \in [0, \pi].$
PT đã cho trở thành :
$4\cos^3t-3\cos t=\sqrt{1-cos^2t}\Leftrightarrow 4\cos^3t-3\cos t=|\sin t|\Leftrightarrow \cos 3t=\sin t$. (do $t \in [0, \pi]$ nên $\sin t \ge 0).$
$\Leftrightarrow \cos 3t= \cos \left (\frac{\pi}{2}-t \right )\Leftrightarrow \left[ {\begin{matrix} 3t=\frac{\pi}{2}-t +k2\pi\\3t=-\frac{\pi}{2}+t +k2\pi\end{matrix}} \right.\Leftrightarrow \left[ {\begin{matrix} t=\frac{\pi}{8} +\frac{k\pi}{2}\\t=-\frac{\pi}{4} +\frac{k\pi}{2}\end{matrix}} \right.                (k \in \mathbb{Z})$
Do $t \in [0, \pi]\Rightarrow \left[ {\begin{matrix} t=\frac{\pi}{8}\\  t=\frac{5\pi}{8}\\ t=\frac{3\pi}{4}\end{matrix}} \right.$
Vậy phương trình đã cho có các nghiệm $x \in \left\{ {\cos\frac{\pi}{8}, \cos\frac{5\pi}{8}, \cos\frac{3\pi}{4}} \right\}$.

Ví dụ $8.$ Giải phương trình $x^3-3x=\sqrt{x+2}           (1)$
Lời giải :
Điều kiện : $x \ge -2$.
Với $x > 2$ thì :
  $x^3-3x=\frac{x^3}{8}+\frac{7}{8}x^2.x-3x > \frac{2^3}{8}+\frac{7}{8}.2^2.x-3x=\frac{x+2}{2}=\frac{\sqrt{x+2}}{2}.\sqrt{x+2}>\sqrt{x+2} $
 Trong trương hợp này thì phương trình $(1)$ vô nghiệm.
 Với $x \in [-2, 2]$, ta đặt $x = 2\cos t          (t \in [0, \pi])$
$(1)\Leftrightarrow 8\cos^3t-6\cos t=\sqrt{2\cos t +2}\Leftrightarrow 4\cos^3t-3\cos t=\sqrt{\frac{\cos t +1}{2}}$
      $\Leftrightarrow \cos 3t = |\cos \frac{t}{2}|\Leftrightarrow \cos 3t = \cos \frac{t}{2}$    (do $\cos \frac{t}{2} \ge 0$)
      $\Leftrightarrow 3t=\pm \frac{t}{2} + k2\pi \Leftrightarrow \left[ {\begin{matrix} t=\frac{k4\pi}{5}\\t=\frac{k4\pi}{7} \end{matrix}} \right. \Leftrightarrow \left[ {\begin{matrix} t=0\\ t=\frac{4\pi}{5}\\t=\frac{4\pi}{7} \end{matrix}} \right.         (t \in [0, \pi])$
Vậy phương trình đã cho có các nghiệm $x \in \left\{ {2, 2\cos\frac{4\pi}{5}, 2\cos\frac{4\pi}{7}} \right\}$.

Ví dụ $9$. Giải hệ phương trình sau :
$\begin{cases}x-2y=xy^2 \\ y-2z=yz^2 \\z-2x=zx^2\end{cases}$
Lời giải :
Viết lại hệ phương trình đã cho về dạng
$\begin{cases}x(1-y^2)=2y \\ y(1-z^2)=2z \\z(1-x^2)=2x  \end{cases}$
Nhận thấy rằng $x, y ,z \notin \left\{ {-1; 1} \right\}$. Thật vậy, giả sử nếu có $y=1$, thay vào phương trình $x(1-y^2)=2y\Rightarrow y=0,$ đây là điều vô lý.
Khi đó, phương trình $\Leftrightarrow \begin{cases}x=\frac{2y}{1-y^2}           (1)\\ y=\frac{2z}{1-z^2}            (2)\\z=\frac{2x}{1-x^2}                    (3) \end{cases}$
Đặt $x = \tan \phi.$
Từ $(3)\Rightarrow z=\frac{2 \tan \phi}{1- \tan^2 \phi}=\tan 2\phi$
Từ $(2)\Rightarrow y=\frac{2 \tan 2\phi}{1- \tan^2 2\phi}=\tan 4\phi$
Từ $(1)\Rightarrow x=\frac{2 \tan 4\phi}{1- \tan^2 4\phi}=\tan 8\phi$
Tóm lại ta có : $\tan 8\phi = \tan \phi \Leftrightarrow 8\phi =  \phi + k\pi\Leftrightarrow \phi=\frac{k\pi}{7}            (k \in \mathbb{Z})$.
Vậy hệ phương trình đã cho có nghiệm $(x, y, z)=\left ( \tan \frac{k\pi}{7}, \tan \frac{k4\pi}{7}, \tan \frac{k2\pi}{7} \right )             (k \in \mathbb{Z}).$

                                 
D. BÀI TẬP ÁP DỤNG

Bài $1.$ Cho $xy+yz+zx=1$. Chứng minh rằng :
$x+y+z-3xyz=x(y^2+z^2)+y(z^2+x^2)+z(x^2+y^2)$

Bài $2.$ Cho $b \ne 0$ và giả sử phương trình $x^3a^2+x+b=0$ có ba nghiệm phân biệt là $x_1, x_2, x_3$.
Chứng minh rằng :
$\left ( x_1-\frac{1}{x_1} \right )\left ( x_2-\frac{1}{x_2} \right )+\left ( x_2-\frac{1}{x_2} \right )\left ( x_3-\frac{1}{x_3} \right )+\left ( x_3-\frac{1}{x_3} \right )\left ( x_1-\frac{1}{x_1} \right )=4$

Bài $3.$ Cho $x$ và $y$ không đồng thời bằng $0$. Chứng minh rằng :
$-2\sqrt{2}-2 \le \frac{x^2-(x-4y)^2}{x^2+4y^2} \le 2\sqrt{2}-2$

Bài $4.$ Cho $a_1, a_2, \cdots, a_{13}$ là các số thực đôi một khác nhau. Chứng minh rằng tồn tại hai số $a_i, a_j          (1 \le i, j \le 13)$ sao cho :
$0<\frac{a_i-a_j}{1+a_ia_j}<2-\sqrt{3}$

Bài $5.$ Cho các số dương $a,b,c$ thỏa mãn $ab+bc+ca=1$. Chứng minh rằng :
$\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{3c}{\sqrt{1+c^2}} \le \sqrt{10}$

Bài $6.$ Giải phương trình
$\sqrt {{x^2} + 1}  = \frac{{{x^2} + 1}}{{2x}} + \frac{{{{\left( {{x^2} + 1} \right)}^2}}}{{2x\left( {1 - {x^2}} \right)}}$

 Bài $7.$ Giải phương trình
$x + \frac{x}{{\sqrt {{x^2} - 1} }} = \frac{{35}}{{12}}$

 Bài $8.$ Giải hệ phương trình
 $\begin{cases}x+\sqrt{1-y^2}=1 \\ y+\sqrt{1-x^2}=\sqrt{3} \end{cases}$

Bài $9.$ Giải hệ phương trình
 $\begin{cases}x\sqrt{1-y^2}+y\sqrt{1-x^2}=1 \\ (1-x)(1+y)=2 \end{cases}$
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376