TÍCH PHÂN HÀM PHÂN THỨC HỮU TỈ CÓ MẪU LÀ ĐA THỨC BẬC CAO


Trong chuyên đề này, ta sẽ tìm hiểu các cách tính tích phân  $\int\limits_\alpha ^\beta  {\frac{{R\left( x \right)}}{{Q(x)}}dx} $ với Q(x) có bậc cao hơn 3.

Lưu ý: Đối với hàm phân thức hữu tỷ có bậc tử thấp hơn bậc mẫu tới hai bậc hoặc tinh ý nhận ra tính chất đặc biệt của hàm số dưới dấu tích phân thì ta có cách giải ngắn gọn hơn.

Ví dụ 1.
Tính các tích phân sau .
a. $\int\limits_1^2 {\frac{{dx}}{{x\left( {{x^4} + 1} \right)}}} $                b. $\int\limits_0^{\frac{1}{2}} {\frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}}dx\quad } $
Giải
a. $\int\limits_1^2 {\frac{{dx}}{{x\left( {{x^4} + 1} \right)}}} $ . Nếu theo cách phân tích bằng đồng nhất hệ số hai tử số thì ta có :
$f(x) = \frac{1}{{x\left( {{x^4} + 1} \right)}} = \frac{A}{x} + \frac{{B{x^3} + C{x^2} + Dx + E}}{{{x^4} + 1}} \\= \frac{{A\left( {{x^4} + 1} \right) + x\left( {B{x^3} + C{x^2} + Dx + E} \right)}}{{x\left( {{x^4} + 1} \right)}} $
$ \Leftrightarrow f(x) = \frac{{\left( {A + B} \right){x^4} + C{x^3} + D{x^2} + {\text{Ex + A}}}}{{x\left( {{x^4} + 1} \right)}}\\ \Rightarrow \left\{ \begin{array}
  A + B = 0  \\
  C = 0,D = 0  \\
  E = 0  \\
  A = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = 1  \\
  B =  - 1  \\
  C = 0,D = 0,  \\
  E = 0  \\
\end{array}  \right. \Rightarrow f(x) = \frac{1}{x} - \frac{{{x^3}}}{{{x^4} + 1}}$
Nhưng nếu ta tinh ý thì cách làm sau sẽ hay hơn .
Vì x và ${x^3}$ cách nhau 3 bậc , mặt khác $x \in \left[ {1;2} \right] \Rightarrow x \ne 0$. Cho nên ta nhân tử và mẫu với ${x^3} \ne 0$. Khi đó $f(x) = \frac{{{x^3}}}{{{x^4}\left( {{x^4} + 1} \right)}}$. Mặt khác $d\left( {{x^4}} \right) = 4{x^3}dx \Leftrightarrow dt = 4{x^3}dx\quad \left( {t = {x^4}} \right)$, cho nên :
$f(x)dx = \frac{1}{3}\frac{{3{x^3}dx}}{{{x^4}\left( {{x^4} + 1} \right)}} = \frac{1}{3}\frac{{dt}}{{t\left( {t + 1} \right)}} = \frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{t + 1}}} \right) = f(t)$. Bài toán trở nên đơn giản hơn rất nhiều .
b. $\int\limits_0^{\frac{1}{2}} {\frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}}dx\quad } $
Nhận xét :
* Nếu theo phương pháp chung thì ta làm như sau :
- $f(x) = \frac{{{x^2} + 1}}{{{{\left( {x - 1} \right)}^3}\left( {x + 3} \right)}} = \frac{A}{{{{\left( {x - 1} \right)}^3}}} + \frac{B}{{{{\left( {x - 1} \right)}^2}}} + \frac{C}{{x - 1}} + \frac{D}{{x + 3}}$
- Sau đó quy đồng mẫu số , đồng nhất hệ số hai tử số , ta có : $A = \frac{1}{2},B = \frac{3}{8},C =  - D = \frac{5}{{32}}$
Do vậy : $I = \int\limits_0^{\frac{1}{2}} {\left( {\frac{1}{{2{{\left( {x - 1} \right)}^3}}} + \frac{3}{{8{{\left( {x - 1} \right)}^2}}} + \frac{5}{{32\left( {x - 1} \right)}} - \frac{5}{{32\left( {x + 3} \right)}}} \right)dx} $
$ = \left[ { - \frac{1}{{8{{\left( {x - 1} \right)}^2}}} - \frac{3}{{8\left( {x - 1} \right)}} + \frac{5}{{32}}\ln \left| {x - 1} \right| - \frac{5}{{32}}\ln \left| {x + 3} \right|} \right]\left| {\begin{array}{*{20}{c}}
  {\frac{1}{2}} \\
  0
\end{array} = } \right.\frac{5}{{32}}\ln \frac{1}{{28}}$

Ví dụ 2.
Tính các tích phân sau :
a. $\int\limits_2^3 {\frac{{{x^4} - 1}}{{{x^6} - 1}}dx} $            b. $\int\limits_1^2 {\frac{{{x^2} + 1}}{{{x^6} + 1}}dx} $            c. $\int\limits_1^2 {\frac{{dx}}{{x\left( {1 + {x^4}} \right)}}} $
 d. $\int\limits_0^1 {\frac{{{x^3}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx} $        e. $\int\limits_0^1 {\frac{{{x^4} + 3{x^2} + 1}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx} $        f. $\int\limits_{\frac{1}{3}}^1 {\frac{{{{\left( {x - {x^3}} \right)}^{\frac{1}{3}}}}}{{{x^4}}}dx} $
Giải
a. $\int\limits_1^2 {\frac{{{x^4} - 1}}{{{x^6} - 1}}dx}  = \int\limits_1^2 {\left( {\frac{{{x^4} + {x^2} + 1}}{{\left( {{x^2} - 1} \right)\left( {{x^4} + {x^2} + 1} \right)}} - \frac{{{x^2} + 2}}{{\left[ {{{\left( {{x^3}} \right)}^2} - 1} \right]}}} \right)dx}  = \int\limits_2^3 {\frac{1}{{{x^2} - 1}}dx + \int\limits_2^3 {\left( {\frac{{{x^2}}}{{\left[ {{{\left( {{x^3}} \right)}^2} - 1} \right]}} + \frac{1}{{{x^3} - 1}} - \frac{1}{{{x^3} + 1}}} \right)} } dx$
Tính J : J= artanx$\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right. = {\text{artan3 - artan2}}$.
Tính K . Đặt $t = {x^3} \Rightarrow \left\{ \begin{array}
  dt = 3{x^2}dx,x = 2 \to t = 8;x = 3 \to t = 27  \\
  g(x)dx = \frac{{{x^2}}}{{{x^3} - 1}}dx = \frac{1}{3}\frac{{dt}}{{\left( {{t^2} - 1} \right)}} = \frac{1}{3}\frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)dt  \\
\end{array}  \right.$
Do đó : K=$\int\limits_2^3 {g(x)dx}  = \frac{1}{6}\int\limits_8^{27} {\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)dt}  = \frac{1}{6}\left( {\ln \left| {t - 1} \right| - \ln \left| {t + 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  {27} \\
  8
\end{array} = \frac{1}{6}\ln \left| {\frac{{t - 1}}{{t + 1}}} \right|\left| {\begin{array}{*{20}{c}}
  {27} \\
  8
\end{array} = } \right.} \right.\frac{1}{6}\ln \frac{{117}}{{98}}$
Tính E=$\int\limits_2^3 {\frac{1}{{{x^3} - 1}}dx}  = \int\limits_2^3 {\frac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} $
Ta có : $h(x) = \frac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2} - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{{x^2} - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
$ = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^2}}}{{{x^3} - 1}} - \frac{1}{2}\left( {\frac{{2x + 1}}{{{x^2} + x + 1}} + \frac{1}{{{x^2} + x + 1}}} \right)$
Vậy : $I = \frac{1}{3}\int\limits_2^3 {\frac{{3{x^2}}}{{{x^3} - 1}}dx}  - \frac{1}{2}\int\limits_2^3 {\frac{{\left( {2x + 1} \right)}}{{{x^2} + x + 1}}dx - \int\limits_2^3 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} } $
$ = \frac{1}{3}\ln \left( {{x^3} - 1} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - \frac{1}{2}\ln \left( {{x^2} + x + 1} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - F = \frac{1}{3}\ln \frac{{28}}{9} - \frac{1}{2}\ln \frac{{13}}{6} - F} \right.} \right.\quad \left( 2 \right)$
Tính F: Đặt : $x + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t \Rightarrow \left\{ \begin{array}
  dx = \frac{{\sqrt 3 }}{2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 2 \to \tan t = \frac{5}{{\sqrt 3 }} \to t = a;x = 3 \to \tan t = \frac{{10}}{{\sqrt 3 }} \to t = b  \\
\end{array}  \right.$
Do đó F=$\int\limits_a^b {\frac{{\frac{{\sqrt 3 }}{2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}}{{\frac{{\sqrt 3 }}{2}\left( {1 + {{\tan }^2}t} \right)}} = \int\limits_a^b {dt}  = t\left| {\begin{array}{*{20}{c}}
  b \\
  a
\end{array} = b - a\quad \left( {\operatorname{t} {\text{ant = }}\frac{{\text{5}}}{{\sqrt {\text{3}} }} \to t = a = {\text{artan}}\frac{{\text{5}}}{{\sqrt {\text{3}} }};b = {\text{artan}}\frac{{{\text{10}}}}{{\sqrt {\text{3}} }}} \right)} \right.} $
Thay vào (2) ta có kết quả .
b. $\int\limits_1^2 {\frac{{{x^2} + 1}}{{{x^6} + 1}}dx}  = \int\limits_0^1 {\frac{{{x^2} + 1}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}}dx = \int\limits_1^2 {\frac{1}{{{{\left( {{x^2} - 1} \right)}^2} - {x^2}}}dx} }  = \int\limits_1^2 {\frac{1}{{\left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)}}dx} $
Ta có : $\frac{1}{{\left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{{\text{Ax + B}}}}{{{x^2} + x + 1}} + \frac{{Cx + D}}{{{x^2} - x + 1}}$
$ = \frac{{\left( {A + C} \right){x^3} + \left( {B - A + C + D} \right){x^2} + \left( {A - B + C + D} \right)x + \left( {B + D} \right)}}{{{x^4} - {x^2} + 1}}$
Đồng nhất hệ số hai tử số ta có hệ : $\left\{ \begin{array}
  A + C = 0  \\
  B - A + C + D = 0  \\
  A - B + C + D = 0  \\
  B + D = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - C  \\
  1 - 2C = 0  \\
   - B + D = 0  \\
  B + D = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A =  - \frac{1}{2}  \\
  C = \frac{1}{2}  \\
  D = \frac{1}{2}  \\
  B = \frac{1}{2}  \\
\end{array}  \right.$
Vậy : $I = \frac{1}{2}\left( {\int\limits_1^2 {\frac{{1 - x}}{{{x^2} + x + 1}}dx + \int\limits_1^2 {\frac{{x + 1}}{{{x^2} - x + 1}}dx} } } \right) = \frac{1}{2}\left( {J + K} \right)\left( 1 \right)$
Tính J=$\int\limits_1^2 {\frac{{ - x + 1}}{{{x^2} + x + 1}}dx}  =  - \frac{1}{2}\int\limits_1^2 {\frac{{2x + 1 - 3}}{{{x^2} + x + 1}}dx} $
$ =  - \frac{1}{2}\int\limits_1^2 {\frac{{2x + 1}}{{{x^2} + x + 1}}dx}  + \frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx}  =  - \frac{1}{2}\ln \left| {{x^2} + x + 1} \right|\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} + E\quad \left( 2 \right)} \right.$
Tính E =$\frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} $, (đặt : $x + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t$)
Tính K
$K = \int\limits_1^2 {\frac{{x + 1}}{{{x^2} - x + 1}}dx}  = \frac{1}{2}\int\limits_1^2 {\frac{{2x - 1 + 3}}{{{x^2} - x + 1}}dx} \\ = \frac{1}{2}\int\limits_1^2 {\frac{{2x - 1}}{{{x^2} - x + 1}}dx}  + \frac{3}{2}\int\limits_0^1 {\frac{1}{{{{\left( {x - \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx = \frac{1}{2}\ln \left| {{x^2} - x + 1} \right|\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} + F\quad \left( 2 \right)} \right.} $
Tính F=$\frac{3}{2}\int\limits_1^2 {\frac{1}{{{{\left( {x - \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}dx} $, (đặt $x - \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t$)
c. $\int\limits_1^2 {\frac{{dx}}{{x\left( {1 + {x^4}} \right)}}}  = \frac{1}{3}\int\limits_1^2 {\frac{{3{x^3}}}{{{x^4}\left( {1 + {x^4}} \right)}}dx}  = \frac{1}{3}\int\limits_1^2 {\left( {\frac{{d\left( {{x^4}} \right)}}{{{x^4}}} - \frac{{d\left( {{x^4}} \right)}}{{1 + {x^4}}}} \right) = \frac{1}{3}\ln \left( {\frac{{{x^4}}}{{1 + {x^4}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{3}\ln \frac{{32}}{{17}}} \right.} $
d. $\int\limits_0^1 {\frac{{{x^3}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = \frac{1}{2}\int\limits_0^1 {\frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}2xdx} \quad \left( 1 \right)$. Đặt : $t = 1 + {x^2} \Rightarrow \left\{ \begin{array}
  {x^2} = t - 1;dt = 2xdx  \\
  x = 0 \to t = 1,x = 1 \to t = 2  \\
\end{array}  \right.$
Do đó $I = \int\limits_1^2 {\frac{{t - 1}}{{{t^3}}}dt}  = \int\limits_1^2 {\left( {\frac{1}{{{t^2}}} - \frac{1}{{{t^3}}}} \right)dt}  = \left( { - \frac{1}{t} + \frac{1}{{4{t^2}}}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{{13}}{{16}}} \right.$
e. $\int\limits_0^1 {\frac{{{x^4} + 3{x^2} + 1}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = \int\limits_0^1 {\left( {\frac{{{{\left( {1 + {x^2}} \right)}^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}} + \frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}} \right)dx}  = \int\limits_0^1 {\frac{1}{{1 + {x^2}}}dx}  + \int\limits_0^1 {\frac{{{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}dx}  = J + K\left( 1 \right)$
Tính J : Bằng cách đặt $x = \tan t \Rightarrow J = \frac{\pi }{4}$
Tính K=$\int\limits_0^1 {\left( {\frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}} - \frac{1}{{{{\left( {1 + {x^2}} \right)}^3}}}} \right)dx}  = E + F\left( 2 \right)$
Tính E : Bằng cách đặt $\begin{array}
  x = \tan t \leftrightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
\end{array}  \right.  \\
    \\
\end{array} $
Vậy : $E = \frac{1}{2}\int\limits_0^1 {{{\left( {\frac{1}{{1 + {x^2}}}} \right)}^2}dx = \frac{1}{2}} \int\limits_0^{\frac{\pi }{4}} {{{\left( {\frac{1}{{1 + {{\tan }^2}t}}} \right)}^2}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{\frac{1}{{c{\text{o}}{{\text{s}}^{\text{4}}}t}}}}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {c{\text{o}}{{\text{s}}^{\text{2}}}tdt} $
$ = \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + c{\text{os2t}}} \right)dt}  = \frac{1}{4}\left( {t + \frac{1}{2}\sin 2t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{1}{4}\left( {\frac{\pi }{4} + \frac{1}{2}} \right) = \frac{{\pi  + 2}}{{16}}} \right.$
Tính F. Tương tự như tính E ;
Bằng cách đặt $\begin{array}
  x = \tan t \leftrightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt  \\
  x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
\end{array}  \right.  \\
    \\
\end{array} $
Vậy : $F = \frac{1}{2}\int\limits_0^1 {{{\left( {\frac{1}{{1 + {x^2}}}} \right)}^3}dx = \frac{1}{2}} \int\limits_0^{\frac{\pi }{4}} {{{\left( {\frac{1}{{1 + {{\tan }^2}t}}} \right)}^3}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{\frac{1}{{c{\text{o}}{{\text{s}}^{\text{6}}}t}}}}\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt}  = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {c{\text{o}}{{\text{s}}^{\text{4}}}tdt} $
$ = \frac{1}{8}\int\limits_0^{\frac{\pi }{4}} {{{\left( {1 + c{\text{os2t}}} \right)}^2}dt}  = \frac{1}{8}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + 2c{\text{os}}2t + \frac{{1 + c{\text{os4t}}}}{2}} \right)} dt\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = } \right.$
$\frac{1}{{16}}\int\limits_0^{\frac{\pi }{4}} {\left( {3 + 4\cos 2t + c{\text{os4t}}} \right)dt = } \frac{1}{{16}}\left( {3t + 2\sin 2t + \frac{1}{4}\sin 4t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{4}} \\
  0
\end{array} = \frac{1}{{16}}\left( {3\frac{\pi }{4} + 2} \right) = \frac{{3\pi  + 8}}{{64}}} \right.$
f. $\int\limits_{\frac{1}{3}}^1 {\frac{{{{\left( {x - {x^3}} \right)}^{\frac{1}{3}}}}}{{{x^4}}}dx}  = \int\limits_{\frac{1}{3}}^1 {{{\left( {\frac{{x - {x^3}}}{{{x^3}}}} \right)}^{\frac{1}{3}}}\frac{1}{{{x^3}}}dx}  = \int\limits_{\frac{1}{3}}^1 {{{\left( {\frac{1}{{{x^2}}} - 1} \right)}^{\frac{1}{3}}}\frac{1}{{{x^2}}}.\frac{{dx}}{x}} $
Đặt : $t = \left( {\frac{1}{{{x^2}}} - 1} \right) \Rightarrow t + 1 = \frac{1}{{{x^2}}} \Leftrightarrow \left\{ \begin{array}
  dt =  - \frac{{dx}}{x}  \\
  x = \frac{1}{3} \to t = 8;x = 1 \to t = 0  \\
\end{array}  \right.$
Khi đó $I =  - \int\limits_8^0 {{t^{\frac{1}{3}}}\left( {t + 1} \right)dt}  = \int\limits_0^8 {\left( {{t^{\frac{4}{3}}} + {t^{\frac{1}{3}}}} \right)dt}  = \left( {\frac{3}{7}{t^{\frac{7}{3}}} + \frac{3}{4}{t^{\frac{4}{3}}}} \right)\left| {\begin{array}{*{20}{c}}
  8 \\
  0
\end{array} = \frac{3}{7}{{.2}^7} + \frac{3}{4}{{.2}^4} = 16\left( {\frac{{24}}{7} + \frac{3}{4}} \right) = \frac{{468}}{7}} \right.$

Ví dụ 3.
Tính các tích phân sau
a.$\int\limits_1^{{e^{\frac{1}{{p + 2}}}}} {\frac{{{x^{\frac{p}{2}}}}}{{{x^{p + 2}} + 1}}dx} $                b. $\int\limits_0^a {\frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}}} $
   c. $\int\limits_0^1 {{e^{x + {e^x}}}dx} $                    d. $\int\limits_0^{2a} {x\sqrt {2ax - {x^2}} dx} $
Giải
a. $\int\limits_1^{{e^{\frac{1}{{p + 2}}}}} {\frac{{{x^{\frac{p}{2}}}}}{{{x^{p + 2}} + 1}}dx} $ :  Ta có : $f(x)dx = \frac{{{x^{\frac{p}{2}}}dx}}{{{{\left( {{x^{\frac{{p + 2}}{2}}}} \right)}^2} + 1}}$.
- Đặt : $t = {x^{\frac{{p + 2}}{2}}} = {x^{\frac{p}{2} + 1}} \Rightarrow \left[ \begin{array}
  dt = {x^{\frac{p}{2}}}dx  \\
  x = 1 \to t = 1;x = {e^{\frac{1}{{p + 2}}}} \to t = \sqrt e   \\
\end{array}  \right. \Leftrightarrow I = \int\limits_1^{\sqrt e } {\frac{{dt}}{{{t^2} + 1}}} $   
- Đặt : $t = \tan u \Rightarrow \left[ \begin{array}
  dt = \frac{{du}}{{c{\text{o}}{{\text{s}}^{\text{2}}}u}}  \\
  t = 1 \to u = \frac{\pi }{4},t = {e^{\frac{1}{2}}} \to u = {u_1}  \\
\end{array}  \right. \Leftrightarrow I = \int\limits_{\frac{\pi }{4}}^{{u_1}} {\frac{{du}}{{c{\text{o}}{{\text{s}}^{\text{2}}}u\left( {1 + {{\tan }^2}u} \right)}} = \int\limits_{\frac{\pi }{4}}^{{u_1}} {du = \frac{\pi }{4} - {u_1}} } $
- Từ : $\tan u = \sqrt e  \Rightarrow u = {u_1} = {\text{artan}}\sqrt {\text{e}}  \Leftrightarrow I = \frac{\pi }{4} - {\text{artan}}\sqrt {\text{e}} $
b. $\int\limits_0^a {\frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}}} $.
Đặt : $x = {\text{atant}} \Rightarrow \left\{ \begin{array}
  {\text{dx = a}}\frac{{{\text{dt}}}}{{{\text{co}}{{\text{s}}^{\text{2}}}t}};x = 0 \to t = 0,x = a \to t = \frac{\pi }{4}  \\
  f(x) = \frac{{{x^3}dx}}{{{{\left( {{x^2} + {a^2}} \right)}^{\frac{3}{2}}}}} = \frac{{{a^3}{{\tan }^3}t}}{{{a^3}{{\left( {\frac{1}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}} \right)}^{\frac{3}{2}}}}}a\frac{{{\text{dt}}}}{{{\text{co}}{{\text{s}}^{\text{2}}}t}} = a\cos t.{\tan ^3}tdt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^a {f(x)dx}  = \int\limits_0^{\frac{\pi }{4}} {a\cos t.{{\tan }^3}tdt}  = \int\limits_0^{\frac{\pi }{4}} {a\cos t.\frac{{{{\sin }^3}t}}{{c{\text{o}}{{\text{s}}^{\text{3}}}t}}dt}  = \int\limits_0^{\frac{\pi }{4}} {a.\frac{{{{\sin }^3}t}}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt = } a\int\limits_0^{\frac{\pi }{4}} {\frac{{\left( {1 - c{\text{o}}{{\text{s}}^{\text{2}}}t} \right)\sin t}}{{c{\text{o}}{{\text{s}}^{\text{2}}}t}}dt} $
- Đặt : $c{\text{ost = u}} \Rightarrow \left\{ \begin{array}
  du =  - \operatorname{s} {\text{intdt;t = }}\frac{\pi }{4} \to u = \frac{1}{{\sqrt 2 }};t = 0 \to u = 1  \\
  f(t)dt = \frac{{\left( {1 - {u^2}} \right)}}{{{u^2}}}\left( { - du} \right) = \left( {1 - \frac{1}{{{u^2}}}} \right)du  \\
\end{array}  \right.$
Vậy : $I = \int\limits_1^{\frac{{\sqrt 2 }}{2}} {\left( {1 - \frac{1}{{{u^2}}}} \right)du = \left( {u + \frac{1}{u}} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{{\sqrt 2 }}{2}} \\
  1
\end{array} = \frac{{\sqrt 2 }}{2} + \frac{2}{{\sqrt 2 }} - 2 = \frac{3}{{\sqrt 2 }} - 2 = \frac{{3\sqrt 2 }}{2} - 2 = \frac{{3\sqrt 2  - 4}}{2}} \right.} $
c. $\int\limits_0^1 {{e^{x + {e^x}}}dx}  = \int\limits_0^1 {{e^x}{e^{{e^x}}}dx} $. Đặt : $t = {e^x} \Rightarrow \left\{ \begin{array}
  dt = {e^x}dx;x = 0 \to t = 1;x = 1 \to t = e  \\
  f(x)dx = {e^x}{e^{{e^x}}}dx = {e^t}dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^1 {f(x)dx}  = \int\limits_1^e {{e^t}dt}  = {e^t}\left| {\begin{array}{*{20}{c}}
  e \\
  1
\end{array} = {e^e} - e} \right.$
d. $\int\limits_0^{2a} {x\sqrt {2ax - {x^2}} dx}  = \int\limits_0^{2a} {x\sqrt {{a^2} - {{\left( {x - a} \right)}^2}} dx} $
Đặt : $x - a = a.\sin t \Rightarrow \left\{ \begin{array}
  dx = a.c{\text{ostdt,x = 0}} \to {\text{t =  - }}\frac{\pi }{2}{\text{;x = 2a}} \to {\text{t = }}\frac{\pi }{2}  \\
  f(x)dx = \left( {a + a.\sin t} \right)\sqrt {{a^2}c{\text{o}}{{\text{s}}^{\text{2}}}t} .a.c{\text{ostdt}}  \\
\end{array}  \right.$
Vậy : $I = {a^3}\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {1 + \sin t} \right)c{\text{o}}{{\text{s}}^{\text{2}}}tdt}  = {a^3}\left[ {\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}tdt + \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}t\sin tdt} } } \right] = {a^3}\left[ {\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{1 + c{\text{os2}}t}}{2}dt - \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {c{\text{o}}{{\text{s}}^{\text{2}}}td\left( {c{\text{os}}t} \right)} } } \right]$
$ = {a^3}\left[ {\frac{1}{2}\left( {t + \frac{1}{2}\sin 2t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  { - \frac{\pi }{2}}
\end{array} - \frac{1}{3}{\text{co}}{{\text{s}}^{\text{3}}}t\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  { - \frac{\pi }{2}}
\end{array}} \right.} \right.} \right] = {a^3}\left[ {\frac{1}{2}\left( {\frac{\pi }{2} + \frac{\pi }{2}} \right)} \right] = {a^3}\frac{\pi }{2}$

Ví dụ 4.

Tính các tích phân sau
a. $\int\limits_2^3 {\frac{{dx}}{{{x^5} - {x^2}}}} $                    b. $\int\limits_0^1 {\frac{{{x^7}dx}}{{{{\left( {1 + {x^4}} \right)}^2}}}} $
 c. $\int\limits_0^1 {\frac{{{x^3} - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx} $                d. $\int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^4}}}dx} $
Giải
a. $\int\limits_2^3 {\frac{{dx}}{{{x^5} - {x^2}}}}  = \int\limits_2^3 {\frac{1}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx\quad \left( 1 \right)} $
Xét : $f(x) = \frac{1}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{A}{{{x^2}}} + \frac{B}{x} + \frac{{Cx + D}}{{{x^2} + x + 1}} + \frac{E}{{x - 1}}$
$ = \frac{{A\left( {{x^2} + x + 1} \right)\left( {x - 1} \right) + Bx\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) + \left( {Cx + D} \right){x^2}\left( {x - 1} \right) + E({x^2} + x + 1){x^2}}}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$
$ = \frac{{\left( {B + C + E} \right){x^4} + \left( {A + D - C + E} \right){x^3} + \left( {E - D} \right){x^2} - Bx - A}}{{{x^2}\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}$.
Đồng nhất hệ số hai tử số ta có hệ :
$\left\{ \begin{array}
  B + C + E = 0  \\
  A + D - C + E = 0  \\
  E - D = 0  \\
  B = 0  \\
  A =  - 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  C =  - E  \\
  E + E + E = 1  \\
  B = 0  \\
  E = D  \\
  A =  - 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  D = \frac{1}{3}  \\
  C =  - \frac{1}{3}  \\
  B = 0  \\
  E = \frac{1}{3}  \\
  A =  - 1  \\
\end{array}  \right. \Rightarrow f(x) =  - \frac{1}{{{x^2}}} + \frac{{ - \frac{1}{3}x + \frac{1}{3}}}{{{x^2} + x + 1}} + \frac{{\frac{1}{3}}}{{x - 1}}$
Vậy : $I = \int\limits_2^3 {\left( { - \frac{1}{{{x^2}}} + \frac{{ - \frac{1}{3}x + \frac{1}{3}}}{{{x^2} + x + 1}} + \frac{{\frac{1}{3}}}{{x - 1}}} \right)dx}  = \int\limits_2^3 {\left( { - \frac{1}{{{x^2}}} - \frac{1}{3}\left( {\frac{{x - 1}}{{{x^2} + x + 1}}} \right) + \frac{1}{3}\frac{1}{{\left( {x - 1} \right)}}} \right)dx} $
$ = \left( {\frac{1}{x} - \frac{1}{6}\ln \left| {{x^2} + x + 1} \right| + \frac{1}{3}\ln \left| {x - 1} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array} - \int\limits_2^3 {\frac{{dx}}{{{{\left( {x + \frac{1}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}} } \right.\\ = \left( {\frac{1}{x} + \frac{1}{6}\ln \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} + x + 1}} + \frac{1}{{\sqrt 3 }}{\text{arctan}}\frac{{{\text{2x + 1}}}}{{\sqrt 3 }}} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  2
\end{array}} \right.$$ = \frac{1}{6} + \frac{1}{{\sqrt 3 }}\left( {{\text{arctan}}\frac{{\text{7}}}{{\sqrt {\text{3}} }} - {\text{arctan}}\frac{{\text{5}}}{{\sqrt {\text{3}} }}} \right)$
b. $\int\limits_0^1 {\frac{{{x^7}dx}}{{{{\left( {1 + {x^4}} \right)}^2}}}}  = \frac{1}{3}\int\limits_0^1 {\frac{{{x^4}}}{{{{\left( {1 + {x^4}} \right)}^2}}}3{x^3}dx\quad \left( 1 \right)} $.
Đặt : $t = 1 + {x^4} \Rightarrow \left\{ \begin{array}
  dt = 3{x^3}dx,x = 0 \to t = 1;x = 1 \to t = 2  \\
  f(x)dx = \frac{1}{3}\left( {\frac{{t - 1}}{{{t^2}}}} \right)dt = \frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{{t^2}}}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_0^2 {\frac{1}{3}\left( {\frac{1}{t} - \frac{1}{{{t^2}}}} \right)dt = \frac{1}{3}\left( {\ln \left| t \right| + \frac{1}{t}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{3}\left( {\ln 2 - \frac{1}{2}} \right)} \right.} $
c. $\int\limits_0^1 {\frac{{{x^3} - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx}  = \frac{1}{2}\int\limits_0^1 {\frac{{\left( {{x^2} - 2} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}2xdx} \quad \left( 1 \right)$
Đặt : $t = 1 + {x^2} \Leftrightarrow {x^2} - 2 = t - 3 \Rightarrow \left\{ \begin{array}
  dt = 2xdx;x = 0 \to t = 1;x = 1 \to t = 2  \\
  f(x)dx = \frac{1}{2}\left( {\frac{{t - 3}}{{{t^2}}}} \right)dt = \frac{1}{2}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)dt  \\
\end{array}  \right.$
Vậy : $I = \int\limits_1^2 {\frac{1}{2}\left( {\frac{1}{t} - \frac{3}{{{t^2}}}} \right)dt = \frac{1}{2}\left( {\ln \left| t \right| + \frac{3}{t}} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{1}{2}\left( {\ln 2 - \frac{3}{2}} \right)} \right.} $
d. $\int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^4}}}dx}  = \int\limits_1^2 {\frac{{\sqrt {1 + {x^3}} }}{{{x^6}}}{x^2}dx} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {1 + {x^3}}  \leftrightarrow {t^2} = 1 + {x^3} \leftrightarrow \left\{ \begin{array}
  2tdt = 3{x^2}dx;x = 1 \to t = \sqrt 2 ,x = 2 \to t = 3  \\
  f(x)dx = \frac{1}{3}\frac{{\sqrt {1 + {x^3}} }}{{{x^6}}}3{x^2}dx = \frac{1}{3}\frac{t}{{{{\left( {{t^2} - 1} \right)}^2}}}2tdt = \frac{2}{3}\frac{{{t^2}}}{{{{\left( {{t^2} - 1} \right)}^2}}}dt  \\
\end{array}  \right.$
Vậy : $I = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {{{\left( {\frac{1}{{t + 1}} + \frac{1}{2}\left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right)}^2}dt = \frac{2}{3}\left[ {\int\limits_{\sqrt 2 }^3 {\frac{1}{4}{{\left( {\frac{1}{{t + 1}} - \frac{1}{{t - 1}}} \right)}^2}} } \right]} $
$ = \frac{1}{6}\int\limits_{\sqrt 2 }^3 {\left( {\frac{1}{{{{\left( {t + 1} \right)}^2}}} + \frac{1}{{{{\left( {t - 1} \right)}^2}}} - \left( {\frac{1}{{t - 1}} - \frac{1}{{t + 1}}} \right)} \right)dt} $
$ = \frac{1}{6}\left[ { - \frac{1}{{t + 1}} - \frac{1}{{t - 1}} - \ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right]\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 2 }
\end{array} = \frac{1}{6}\left( {\frac{{ - 2t}}{{\left( {{t^2} - 1} \right)}} - \ln \left| {\frac{{t - 1}}{{t + 1}}} \right|} \right)\left| {\begin{array}{*{20}{c}}
  3 \\
  {\sqrt 2 }
\end{array}} \right.} \right. = \frac{{8\sqrt 2  - 3}}{{24}} + \frac{1}{3}\ln \left( {2\sqrt 2  - 2} \right)$

Ví dụ 5.

Tính các tích phân sau :
a. $\int\limits_{\sqrt 7 }^4 {\frac{{dx}}{{x\sqrt {{x^2} + 9} }}} $                    b. $\int\limits_0^1 {\frac{{\left( {{x^2} - x} \right)dx}}{{\sqrt {{x^2} + 1} }}} $
 c. $\int\limits_0^{\sqrt 3 } {\frac{{{x^5} - 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx} $                    d. $\int\limits_0^1 {\sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx} $
Giải
a. $\int\limits_{\sqrt 7 }^4 {\frac{{dx}}{{x\sqrt {{x^2} + 9} }}}  = \int\limits_{\sqrt 7 }^4 {\frac{{xdx}}{{{x^2}\sqrt {{x^2} + 9} }}} \quad \left( 1 \right)$.
Đặt : $t = \sqrt {{x^2} + 9}  \Rightarrow \left\{ \begin{array}
  {t^2} = {x^2} + 9 \leftrightarrow tdt = xdx,{x^2} = {t^2} - 9  \\
  x = \sqrt 7  \to t = 4,x = 4 \to t = 5  \\
\end{array}  \right.$. Do đó : $I = \int\limits_4^5 {\frac{{dt}}{{t\left( {{t^2} - 9} \right)}} = } \int\limits_4^5 {\frac{{dt}}{{t\left( {t - 3} \right)\left( {t + 3} \right)}}} $
Ta có : $f(t) = \frac{1}{{t\left( {t - 3} \right)\left( {t + 3} \right)}} = \frac{A}{t} + \frac{B}{{t - 3}} + \frac{C}{{t + 3}} = \frac{{A\left( {{t^2} - 9} \right) + Bt\left( {t + 3} \right) + C\left( {t - 3} \right)t}}{{t\left( {{t^2} - 9} \right)}}$
Đồng nhất hệ số hai tử số bằng cách thay lần lượt các nghiệm vào hai tử số ta có :
- Với x=0 : -9A=1 $ \to A =  - \frac{1}{9}$
- Với x=-3 : 9C=1 $ \to C = \frac{1}{9}$
- Với x=3 : 9B=1 $ \to B = \frac{1}{9}$
Vậy : $I = \frac{1}{9}\left[ {\int\limits_4^5 {\left( { - \frac{1}{t} + \frac{1}{{t - 3}} + \frac{1}{{t + 3}}} \right)dt} } \right] = \frac{1}{9}\left[ {\ln \left( {{t^2} - 9} \right) - \ln t} \right]\left| {\begin{array}{*{20}{c}}
  5 \\
  4
\end{array} = \frac{1}{9}\ln \frac{{{t^2} - 9}}{t}\left| {\begin{array}{*{20}{c}}
  5 \\
  4
\end{array} = \frac{1}{9}\ln \frac{{144}}{{35}}} \right.} \right.$
Chú ý : Nếu theo phương pháp chung thì đặt : $x = 3\sin t \to dx = 3\cos tdt$.
Khi : $\left\{ \begin{array}
  x = \sqrt 7  \to \sqrt 7  = 3\sin t \leftrightarrow \sin t = \frac{{\sqrt 7 }}{3}  \\
  x = 4 \to 4 = 3\sin t \leftrightarrow \sin t = \frac{4}{3} > 1  \\
\end{array}  \right.$. Như vậy ta không sử dụng được phương pháp này được .
b. $\int\limits_0^1 {\frac{{\left( {{x^2} - x} \right)dx}}{{\sqrt {{x^2} + 1} }}}  = \int\limits_0^1 {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}dx - \int\limits_0^1 {\frac{x}{{\sqrt {{x^2} + 1} }}dx}  = J - K\quad \left( 1 \right)} $
* Để tính J :
Đặt : $x = \tan t \Rightarrow \left\{ \begin{array}
  dx = \frac{1}{{c{\text{o}}{{\text{s}}^2}t}}dt,x = 0 \to t = 0;x = 1 \to t = \frac{\pi }{4}  \\
  f(x)dx = \frac{{{{\tan }^2}t.\frac{1}{{c{\text{o}}{{\text{s}}^2}t}}dt}}{{\sqrt {1 + {{\tan }^2}t} }} = \frac{{{{\tan }^2}t}}{{c{\text{ost}}}}dt  \\
\end{array}  \right.$. Tính tích phân này không đơn giản , vì vậy ta phải có cách khác .
- Từ : $g(x) = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} }} = \frac{{{x^2} + 1 - 1}}{{\sqrt {{x^2} + 1} }} = \sqrt {{x^2} + 1}  - \frac{1}{{\sqrt {{x^2} + 1} }} \Rightarrow \int\limits_0^1 {g(x)dx = \int\limits_0^1 {\sqrt {{x^2} + 1} dx - \int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx} } } $
- Hai tích phân này đều tính được .
+/ Tính : $E = \int\limits_0^1 {\sqrt {{x^2} + 1} dx = } x\sqrt {{x^2} + 1} \left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} - \int\limits_0^1 {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}dx = } } \right.\sqrt 2  - \left( {\int\limits_0^1 {\sqrt {{x^2} + 1} } dx - \int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx} } \right)$
$ = \sqrt 2  - E + \ln \left| {x + \sqrt {{x^2} + 1} } \right|\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array}} \right. \Rightarrow 2E = \sqrt 2  + \ln \left( {1 + \sqrt 2 } \right) \Leftrightarrow E = \frac{{\sqrt 2 }}{2} + \frac{1}{2}\ln \left( {1 + \sqrt 2 } \right)$
* Tính K=$\int\limits_0^1 {\frac{x}{{\sqrt {{x^2} + 1} }}dx = \sqrt {{x^2} + 1} \left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \sqrt 2  - 1} \right.} $; $\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 1} }}dx = \ln \left| {x + \sqrt {{x^2} + 1} } \right|\left| {\begin{array}{*{20}{c}}
  1 \\
  0
\end{array} = \ln \left( {1 + \sqrt 2 } \right)} \right.} $
Do vậy : I=$\frac{{\sqrt 2 }}{2} + \frac{1}{2}\ln \left( {1 + \sqrt 2 } \right) + \ln \left( {1 + \sqrt 2 } \right) = \frac{{\sqrt 2 }}{2} + \frac{3}{2}\ln \left( {1 + \sqrt 2 } \right)$
c. $\int\limits_0^{\sqrt 3 } {\frac{{{x^5} - 2{x^3}}}{{\sqrt {{x^2} + 1} }}dx}  = \int\limits_0^{\sqrt 3 } {\frac{{{x^5}}}{{\sqrt {{x^2} + 1} }}dx - 2\int\limits_0^{\sqrt 3 } {\frac{{{x^3}}}{{\sqrt {{x^2} + 1} }}dx = J - K\left( 1 \right)} } $
- Tính J: Đặt $t = \sqrt {{x^2} + 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt;x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
  f(x)dx = \frac{{{x^4}xdx}}{{\sqrt {{x^2} + 1} }} = \frac{{{{\left( {{t^2} - 1} \right)}^2}tdt}}{t} = \left( {{t^4} - 2{t^2} + 1} \right)dt  \\
\end{array}  \right.$
Suy ra : J=$\int\limits_1^2 {\left( {{t^4} - 2{t^2} + 1} \right)dt = \left( {\frac{1}{5}{t^5} - \frac{2}{3}{t^3} + t} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{{38}}{{15}}} \right.} $
- Tính K: Đặt $t = \sqrt {{x^2} + 1}  \Rightarrow \left\{ \begin{array}
  {x^2} = {t^2} - 1;xdx = tdt;x = 0 \to t = 1,x = \sqrt 3  \to t = 2  \\
  f(x)dx = \frac{{{x^2}xdx}}{{\sqrt {{x^2} + 1} }} = \frac{{\left( {{t^2} - 1} \right)tdt}}{t} = \left( {{t^2} - 1} \right)dt  \\
\end{array}  \right.$
Suy ra : K= $\int\limits_1^2 {\left( {{t^2} - 1} \right)dt = \left( {\frac{1}{3}{t^3} - t} \right)\left| {\begin{array}{*{20}{c}}
  2 \\
  1
\end{array} = \frac{4}{3}} \right.} $
Vậy : I=$\frac{{28}}{{15}} + \frac{4}{3} = \frac{{48}}{{15}} = \frac{{16}}{5}$
d. $\int\limits_0^1 {\sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx} $. Đặt : $x = \sin t \to \left\{ \begin{array}
  dx = c{\text{ostdt}}{\text{. x = 0}} \to {\text{t = 0;x = 1}} \to {\text{t = }}\frac{\pi }{2}  \\
  f(x)dx = \sqrt {{{\left( {1 - {x^2}} \right)}^3}} dx = \sqrt {c{\text{o}}{{\text{s}}^{\text{6}}}t} c{\text{ostdt = co}}{{\text{s}}^{\text{4}}}tdt  \\
\end{array}  \right.$
Do đó I=$\int\limits_0^{\frac{\pi }{2}} {{{\left( {\frac{{1 - c{\text{os2t}}}}{2}} \right)}^2}dt = \frac{1}{4}\int\limits_0^{\frac{\pi }{2}} {\left( {1 - 2\cos 2t + \frac{{1 + c{\text{os4t}}}}{2}} \right)dt = \int\limits_0^{\frac{\pi }{2}} {\left( {\frac{3}{4} - \frac{1}{2}c{\text{os2t + }}\frac{1}{{\text{8}}}c{\text{os4t}}} \right)dt} } } $
            $ = \left( {\frac{3}{4}t - \frac{1}{4}\sin 2t + \frac{1}{{32}}\sin 4t} \right)\left| {\begin{array}{*{20}{c}}
  {\frac{\pi }{2}} \\
  0
\end{array} = \frac{{3\pi }}{8}} \right.$

Thẻ

Lượt xem

67697
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376