A.    LÝ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN
$1.$ Cho hàm số $y=f(x)$ có đồ thị $(C_1)$ và hàm số $y=g(x)$ có đồ thị $(C_2)$. Xét sự tương giao của $(C_1)$ và $(C_2)$ theo các bước.
+ Lập phương trình hoành độ giao điểm của $(C_1)$ và $(C_2)$ là $f(x)=g(x) f(x)-g(x)=0                  (1)$
+ Biện luận số giao điểm của $(C_1)$ và $(C_2)$ qua nghiệm của PT $(1)$
   Nếu $(1)$ vô nghiệm thì $(C_1)$ không cắt $(C_2)$
   Nếu $(1)$ có nghiệm bội chẵn (dạng $(x-a)^{2n}.F(x)=0$) thì $(C_1)$ tiếp xúc với $(C_2)$
   Nếu $(1)$ có $n$ nghiệm đơn thì $(C_1)$ cắt $(C_2)$ tại $n$ điểm phân biệt
$2.$ Điều kiện $(C_1)$ và$(C_2)$ tiếp xúc nhau còn có thể thể hiện thông qua sự kiện hệ phương trình sau có nghiệm
$\begin{cases}f(x)=g(x) \\ f'(x)=g'(x) \end{cases}             (2)$
HPT $(2)$ có bấy nhiêu nghiệm thì hai đồ thị tiếp xúc nhau tại bấy nhiêu điểm.
$3.$ Có ba phương pháp cơ bản để giải quyết các bài toán dạng này:
 + Phương pháp nhẩm nghiệm: Thường là nhẩm nghiệm hữu tỷ.
 + Phương pháp đồ thị : Dựa vào hình dáng đồ thị và cực trị của hàm số.
 + Phương pháp hàm số: Chuyển về bài toán tương giao mới.
B.    CÁC DẠNG BÀI TOÁN TRONG CÁC KỲ THI ĐẠI HỌC
Ví dụ $1.$
Cho hàm số $(C_m) : y = x^3 – 3(m+1)x^2+2(m^2+4m+1)x-4m(m+1)$
Tìm $m$ để $(C_m)$ cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn $1.$
Lời giải:
Phương trình biểu diễn trục hoành có dạng $y=0$ nên PT biểu diễn sự tương giao của $(C_m)$ và trục hoành là :
$ x^3 – 3(m+1)x^2+2(m^2+4m+1)x-4m(m+1)=0$
Nhận thấy $x=2$ thỏa mãn PT này nên trước hết ta phân tích để tạo ra nhân tử $x-2$ ở vế trái của PT.
PT $\Leftrightarrow x^3 – 2x^2-(3m+1)x^2+6(3m+1)x+2m(m+1)x-4m(m+1)=0$
      $\Leftrightarrow (x-2)\left[ {x^2-(3m+1)x+2m(m+1)} \right]=0$
Tiếp tục phân tích với nhận xét $x=2m$ là nghiệm của PT.
PT $\Leftrightarrow (x-2)\left[ {x^2-2mx-(m+1)x+2m(m+1)} \right]=0$
      $\Leftrightarrow (x-2)(x-2m)(x-m-1)=0$
      $\Leftrightarrow \left[ {\begin{matrix} x=2\\x=2m\\x=m+1 \end{matrix}} \right.$
Như vậy, yêu cầu bài toán $\Leftrightarrow \boxed{\displaystyle\begin{cases}m>\frac{1}{2} \\m \ne 1 \end{cases}}$.
Ví dụ $2.$  (Đại học Khối $D-2006$)
Cho $(C): y=x^3-3x+2$. Gọi $d$ là đường thẳng qua $A(3; 20)$ có hệ số góc $m$.
Tìm $m$ để đường thằng $d$ cắt $(C)$ tại ba điểm phân biệt.
Lời giải:
Phương trình đường thẳng $(d)$ có dạng,  $(d): y=m(x-3)+20$.
Phương trình hoành độ giao điểm của $(C)$ và $(d)$ là
      $x^3-3x+2=m(x-3)+20$
$\Leftrightarrow x^3-3x-18=m(x-3)$
$\Leftrightarrow (x-3)(x^2+3x+6)=m(x-3)$
$\Leftrightarrow (x-3)(\underbrace{x^2+3x+6-m}_{\displaystyle g(x)})=0             (1)$
Như vậy ta cần PT $(1)$ có ba nghiệm phân biệt, tức là PT $g(x)=0$ có hai nghiệm phận biệt và khác $3$.
Viết thành $\begin{cases}\Delta_g > 0 \\ g(3) \ne 0 \end{cases}\Leftrightarrow \begin{cases}4m-15>0 \\ 24-m \ne 0\end{cases}\Leftrightarrow \boxed{\displaystyle\begin{cases}m>\frac{15}{4} \\ m \ne 24\end{cases}}$
Ví dụ $3.$ Cho hàm số $(C_m) : y=x^3-2mx^2+(2m^2-1)x+m(1-m^2)$
Tìm $m$ để $(C_m)$ cắt trục hoành tại ba điểm phân biệt có hoành độ dương.
Lời giải :
Xét phương trình tương giao :
      $ x^3-2mx^2+(2m^2-1)x+m(1-m^2)=0$
$\Leftrightarrow (x-m)\underbrace{(x^2-mx+m^2-1)}_{\displaystyle g(x)}=0$
Yêu cầu bài toán trở thành $m>0$ và PT $g(x)=0$ có hai nghiệm dương phân biệt khác $m$.
$\Leftrightarrow \begin{cases}m>0 \\ \Delta_g >0\\P=x_1x_2=\frac{c}{a}>0\\S=x_1+x_2=-\frac{b}{a}>0\\g(m) \ne 0 \end{cases}\Leftrightarrow \begin{cases}m>0 \\ 4-3m^2 >0\\m^2-1>0\\m>0\\m^2-1 \ne 0 \end{cases}\Leftrightarrow \boxed{\displaystyle1<m< \frac{2}{\sqrt{3}}}$.
Ví dụ $4.$ (Đại học Khối $A-2010$)
Cho hàm số $(C_m) : y=x^3-2x^2+(1-m)x+m$
Tìm $m$ để $(C_m)$ cắt trục hoành tại ba điểm phân biệt có hoành độ $x_1, x_2, x_3$ thỏa mãn điều kiện $x_1^2+ x_2^2+ x_3^2 <4$.
Lời giải :
Xét phương trình tương giao :
      $ x^3-2x^2+(1-m)x+m=0$
$\Leftrightarrow (x-1)\underbrace{(x^2-x-m)}_{\displaystyle g(x)}=0$
Trước hết để $(C_m)$ cắt trục hoành tại ba điểm phân biệt thì PT $g(x)=0$ có hai nghiệm phân biệt khác $1$.
$\Leftrightarrow \begin{cases} \Delta_g >0\\g(0) \ne 0 \end{cases}\Leftrightarrow \begin{cases}1+4m>0 \\-m \ne 0 \end{cases}\Leftrightarrow \begin{cases}m>-\frac{1}{4} \\ m \ne 0\end{cases}$.
Nhận thấy ở ký hiệu ban đầu của bài toán thì $x_1=1$ và $x_2, x_3$ là các nghiệm của PT $g(x)=0$.
Như vậy,
$x_1^2+ x_2^2+ x_3^2 <4\Leftrightarrow x_2^2+ x_3^2 <3\Leftrightarrow (x_2+x_3)^2-2x_2x_3<3\underbrace{\Leftrightarrow}_{\displaystyle \text {Vi-ét}} (1)^2-2.(-m) <3\Leftrightarrow 1+2m<3\Leftrightarrow m<1$.
Tóm lại, $\boxed{\displaystyle\begin{cases}1>m>-\frac{1}{4} \\ m \ne 0\end{cases}}$.
Ví dụ $5.$
Với giá trị nào của $m$ thì đồ thị hàm số $(C): y=-x^3-3x^2+4$ cắt đường thẳng $(d) :y=m+2$ tại $1$ điểm, $2$ điểm, $3$ điểm phân biệt.
Lời giải :
Xét phương trình tương giao :
      $ -x^3-3x^2+4=m+2$
Thực hiện thao tác khảo sát sự biến thiên và vẽ đồ thị của hàm số $(C)$ ta thu được bảng biến thiến
$\begin{array}{c|ccccccccc}
x  & -\infty & \; & \; & -2 & \; & \;& 0 & \; &  +\infty\\
\hline
y' & \;  & -  & \; & 0 & \; & + & 0 & - &\; \\
\hline
\quad & +\infty \; & \; & & \; & \; & &4 &\; &\;  \\
f(x) & \; & \searrow  &  \; & \;  &  \nearrow & \; &\;& \searrow & \;  \\
 & \; & \; &&0 & \; & \: & \; &  &-\infty
\end{array}$
Chú ý rằng $y=m+2$ là dạng những đường thẳng song song với trục hoành. Vì thế, dựa vào bảng biến thiên ta có
$(C)$ cắt $(d)$ tại $1$ điểm nếu $\left[ {\begin{matrix} m+2>4\\ m+2<0 \end{matrix}} \right.\Leftrightarrow \left[ {\begin{matrix} m>2\\ m<-2 \end{matrix}} \right.$.
$(C)$ cắt $(d)$ tại $2$ điểm phân biệt nếu $\left[ {\begin{matrix} m+2=4\\ m+2=0 \end{matrix}} \right.\Leftrightarrow \left[ {\begin{matrix} m=2\\ m=-2 \end{matrix}} \right.$.
$(C)$ cắt $(d)$ tại $3$ điểm phân biệt nếu $0<m+2<4\Leftrightarrow -2<m<2$.
Ví dụ $6.$
Cho hàm số $(C_m) : y=x^4-(3m+2)x^2+3m$
Tìm $m$ để $(C_m)$ cắt đường thẳng $y=-1$ tại bốn điểm phân biệt có hoành độ nhỏ hơn $2$.
Lời giải:
Xét phương trình tương giao :
      $ x^4-(3m+2)x^2+3m=-1\underbrace{\Leftrightarrow }_{\displaystyle t=x^2}t^2-(3m+2)t+3m+1=0$
Yêu cầu bài toán tương đương với PT $ t^2-(3m+2)t+3m+1=0$ có hai nghiệm dương và bé hơn $4$.
Mặt khác $t^2-(3m+2)t+3m+1=0\Leftrightarrow \left[ {\begin{matrix} t=2\\ t=3m+1 \end{matrix}} \right.$
Từ đó suy ra : $\begin{cases}3m+1 \ne 1\\ 0<3m+1<4 \end{cases}\Leftrightarrow \boxed{ \displaystyle  \begin{cases}-\frac{1}{3} < m < 1 \\m \ne 0 \end{cases}}$.

Bài tập tương tự
$1.$ Cho đường cong $y=-x^3+3x^2  (C)$ và đường thẳng $y=-k^3+3k^2$. Tìm $k$ để chúng cắt nhau tại ba điểm phân biệt.
Hướng dẫn : Xét PT tương giao
$-x^3+3x^2=-k^3+3k^2\Leftrightarrow (x-k)\left[ {x^2+x(k-3)+k^2-3k} \right]=0$.
Đáp số : $\begin{cases}-1<k<3\\ k \ne 0; k \ne 2 \end{cases}$.
$2.$ Cho hàm số $(C_m) : y=x^3+2(m-1)x^2+(m^2-4m+1)x-2(m^2+1)$
Tìm $m$ để $(C_m)$ cắt trục hoành tại ba điểm phân biệt có hoành độ nhỏ hơn $3$.
Hướng dẫn: Xét phương trình tương giao :
      $ x^3+2(m-1)x^2+(m^2-4m+1)x-2(m^2+1)=0$
$\Leftrightarrow (x-2)\underbrace{(x^2+2mx-m^2-1)}_{\displaystyle g(x)}=0$
Ta cần có $\Leftrightarrow \begin{cases} \Delta'_g=m^2+m+1 >0\\(3-x_1)(3-x_2)>0\\x_1+x_2<6\\g(2) \ne 0 \end{cases}\Leftrightarrow \begin{cases} 9-3(x_1+x_2)+x_1x_2>0\\x_1+x_2<6\\-m^2+4m+3 \ne 0 \end{cases}\Leftrightarrow \begin{cases}3-\sqrt {17} < m < 3+ \sqrt{17} \\ m \ne 2 \pm \sqrt {17} \end{cases}$.

sao khong co vo tỉ –  ahappyboy_4ever_153 14-07-13 08:47 PM
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376