1. Hệ hai phương trình bậc nhất hai ẩn
          Cho hai phương trình bậc nhất hai ẩn $ax + by = c$ và $ a'x + b'y = c'$ (tức là ${a^2} + {b^2} \ne 0\,\,,a{'^2} + b{'^2} \ne 0\,$). Khi đó, ta có hệ hai phương trình bậc nhất hai ẩn sau:
$(I)\left\{ \begin{gathered}
  {\text{ax}} + by = c  \\
  a'x + b'x = c'  \\
\end{gathered}  \right.$
     Mỗi cặp số $({x_0};{y_0})$đồng thời là nghiệm của cả hai phương trình trong hệ được gọi là một nghiệm của hệ.
     Giải hệ phương trình là tìm tất cả các nghiệm của nó.
     Các khái niệm hệ phương trình tương đương, hệ phương trình hệ quả cũng tương tự như đối với phương trình.
    Đối với hệ phương trình, chúng ta cũng có những phép biến đổi tương đương, tức là phép biến đổi một hệ phương trình thành một hệ phương trình khác tương đương với nó. Biến đổi hệ phương trình bằng cách áp dụng quy tắc cộng đại số hoặc quy tắc thế mà ta đã học chính là những phép biến đổi tương đương các hệ phương trình.
Giả sử (d) là đường thẳng $ax + by = c$ và (d’) là đường thẳng  $a'x + b'y = c'$. Khi đó:
 
1) Hệ (I) có nghiệm duy nhất $ \Leftrightarrow $(d) và (d’) cắt nhau;
2) Hệ (I) vô nghiệm$ \Leftrightarrow $(d) và (d’) song song với nhau;
3) Hệ (I) có vô số nghiệm $ \Leftrightarrow $ (d) và (d’) trùng nhau.
2. Giải và biện luận hệ hai phương trình bậc nhất hai ẩn.
a, Xây dựng công thức
Xét hệ phương trình bậc nhất hai ẩn
 (I) $\left\{ \begin{gathered}
  {\text{ax}} + by = c\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)  \\
  a'x + b'y = c'\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \\
\end{gathered}  \right.$                           
- Nhân hai vế của phương trình (1) với b’, hai vế của phương trình (2) với –b rồi cộng các vế tương ứng, ta được
$(ab' - a'b)x = cb' - c'b$                (3)
- Nhân hai vế của phương trình (1) với –a’, hai vế của phương trình (2) với a rồi cộng các vế tương ứng, ta được
$(ab' - a'b)y = ac' - a'c$                 (4)
- Trong (3) và (4) ta đặt $D = ab' - a'b,\,\,{D_x} = cb' - c'b\,,\,{D_y} = ac' - a'c$. Khi đó, ta có hệ phương trình hệ quả
(II)$\left\{ \begin{gathered}
  D.\,x = {D_x}  \\
  D.y = {D_y}  \\
\end{gathered}  \right.$
Đối với hệ (II), ta xét các trường hợp sau:
1) $D \ne 0$: Hệ có một nghiệm duy nhất (x; y), trong đó
$x = \frac{{{D_x}}}{D};\,\,y = \frac{{{D_y}}}{D}$
2) $D = 0$
${D_x} \ne 0$hoặc${D_y} \ne 0$: Hệ vô nghiệm
${D_x} = {D_y} = 0$: Hệ có vô số nghiệm, tập nghiệm của hệ là tập nghiệm của phương trình $ax + by = c$
b, Thực hành giải và biện luận
Trong thực hành giải và biện luận hệ phương trình bậc nhất hai ẩn ,định thức là một công cụ đem lại nhiều thuận tiện.
Biểu thức $pq' - p'q $ với p, q, p’, q’ là những số, được gọi là một định thức cấp 2 và kí hiệu là
$\left| \begin{gathered}
  p\,\,\,\,\,\,\,\,\,q \\
  p'\,\,\,\,\,\,\,\,q'  \\
\end{gathered}  \right|\,\,$
Như vậy, các biểu thức $D;{D_x};{D_y}$mà chúng ta gặp khi giải hệ (I) đều là những định thức cấp hai:
$D = ab' - a'b = \left| \begin{gathered}
  a\,\,\,\,\,\,\,\,\,b  \\
  a'\,\,\,\,\,\,\,\,b'  \\
\end{gathered}  \right|,\,\,{D_x} = cb' - c'b = \left| \begin{gathered}
  c\,\,\,\,\,\,\,\,\,b  \\
  c'\,\,\,\,\,\,\,\,b'  \\
\end{gathered}  \right|,\,{D_y} = ac' - a'c = \left| \begin{gathered}
  a\,\,\,\,\,\,\,\,\,c \\
  a'\,\,\,\,\,\,\,\,c' \\
\end{gathered}  \right|$
Ta thấy trong mỗi định thức trên đều có hai hàng và hai cột
Ta có thể sử dụng định thức để giải hệ phương trình bậc nhất hai ẩn.
Ví dụ 2: Giải và biện luận hệ phương trình
$\left\{ \begin{gathered}
  mx + y = m + 1 \\
  x + my = 2 \\
\end{gathered}  \right.$
Giải
Trước hết, ta tính các định thức
$D = \left| \begin{gathered}
  m\,\,\,\,\,\,\,\,\,\,1 \\
  1\,\,\,\,\,\,\,\,\,\,\,\,m \\
\end{gathered}  \right| = {m^2} - 1 = (m - 1)(m + 1)$
${D_x} = \left| \begin{gathered}
  m\, + 1\,\,\,\,\,\,\,\,\,\,\,1 \\
  2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m  \\
\end{gathered}  \right| = {m^2} + m - 2 = (m - 1)(m + 2)$
${D_y} = \left| \begin{gathered}
  m\,\,\,\,\,\,\,\,m + 1  \\
  1\,\,\,\,\,\,\,\,\,\,\,\,\,\,2  \\
\end{gathered}  \right| = {m^{}} - 1$
Ta phải xét các trường hợp sau:
1)$D \ne 0$, tức là $m \ne  \pm 1$. Ta có:
$x = \frac{{{D_x}}}{D} = \frac{{(m - 1)(m + 2)}}{{\left( {m - 1} \right)\left( {m + 1} \right)}} = \frac{{m + 2}}{{m + 1}}$
$y = \frac{{{D_y}}}{D} = \frac{{m - 1}}{{\left( {m - 1} \right)\left( {m + 1} \right)}} = \frac{1}{{m + 1}}$
Hệ có một nghiệm duy nhất $\left( {x;y} \right) = \left( {\frac{{m + 2}}{{m + 1}};\frac{1}{{m + 1}}} \right)$
2)$D = 0$, tức là m = 1 hoặc m = -1
- Nếu m = 1 thì $D = {D_x} = {D_y} = 0$và hệ trở thành $\left\{ \begin{gathered}
  x + y = 2  \\
  x + y = 2  \\
\end{gathered}  \right.$. Ta có
$\left\{ \begin{gathered}
  x + y = 2 \\
  x + y = 2 \\
\end{gathered}  \right. \Leftrightarrow x + y = 2 \Leftrightarrow \left\{ \begin{gathered}
  x \in \mathbb{R}  \\
  y = 2 - x  \\
\end{gathered}  \right.$
- Nếu m= -1 thì $D = 0$, nhưng ${D_x} \ne 0$nên hệ vô nghiệm
Kết luận
Với $m \ne  \pm 1$, hệ có nghiệm duy nhất $\left( {x;y} \right) = \left( {\frac{{m + 2}}{{m + 1}};\frac{1}{{m + 1}}} \right)$
Với m = -1, hệ vô nghiệm;
Với m = 1, hệ có vô số nghiệm (x; y) tính theo công thức
$\left\{ \begin{gathered}
  x \in \mathbb{R}  \\
  y = 2 - x  \\
\end{gathered}  \right.$
3. Ví dụ về giải hệ phương trình bậc nhất ba ẩn
Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là
$\left\{ \begin{gathered}
  {a_1}x + {b_1}y + {c_1}z = {d_1}  \\
  {a_2}x + {b_2}y + {c_2}z = {d_2}  \\
  {a_3}x + {b_3}y + {c_3}z = {d_3}  \\
\end{gathered}  \right.$
Trong đó các hệ số của ba ẩn x, y, z trong mỗi phương trình của hệ không đồng thời bẳng 0.
Giải hệ phương trình trên là tìm tất cả các bộ ba số (x; y; z) đồng thời nghiệm đúng cả ba phương trình của hệ.
NHẬN XÉT
Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để quy về giải các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số hay phương pháp thế giống như đối với hệ phương trình hai ẩn.

Thẻ

Lượt xem

33111
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376