1.Góc giữa hai vectơ

                 
       Cho 2 vecto $\overrightarrow {a\,} \& \overrightarrow b $ đều khác 0. Từ 1 điểm O nào đó vẽ $\overrightarrow {OA}  = \overrightarrow {a\,} \& \overrightarrow {OB}  = \overrightarrow b $
- Số đo của góc AOB được gọi là số đo của góc giữa $\overrightarrow a $ và $\overrightarrow b $, hoặc đơn giản là góc giữa hai vectơ$\overrightarrow a $ và $\overrightarrow b $
- Nếu $\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^ \circ }$ thì ta nói rằng hai vectơ $\overrightarrow a $ và $\overrightarrow b $ vuông góc với nhau, kí hiệu là $\overrightarrow a  \bot \overrightarrow b $.
2. Định nghĩa tích vô hướng cả hai vectơ
       Tích vô hướng của hai vectơ $\overrightarrow a $ và $\overrightarrow b $ là một số, kí hiệu $\overrightarrow a .\overrightarrow b $, được xác định bởi
$\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|c{\text{os}}\left( {\overrightarrow a ,\overrightarrow b } \right)$
Ví dụ:
Cho tam giác đều ABC có cạnh a và trọng tâm G .Tính các tích vô hướng sau
$\begin{gathered}
  \overrightarrow {AB} .\overrightarrow {AC} ;\,\,\overrightarrow {AC} .\overrightarrow {CB} \,\,;\,\,\,\overrightarrow {AG} .\overrightarrow {AB}    \\
  \overrightarrow {GB} .\overrightarrow {GC} ;\,\,\,\overrightarrow {BG} .\overrightarrow {GA} \,;\,\,\,\,\overrightarrow {GA} .\overrightarrow {BC}    \\
\end{gathered} $
Giải.
 
          Theo định nghĩa ta có
$\begin{gathered}
  \overrightarrow {AB} .\overrightarrow {AC} \, = \,a.a.c{\text{os}}{60^0} = \frac{1}{2}{a^2}   \\
  \overrightarrow {AC} .\overrightarrow {CB} \, = \,a.a.c{\text{os12}}{{\text{0}}^0} =  - \frac{1}{2}{a^2}   \\
  \overrightarrow {AG} .\overrightarrow {AB}  = \,a\frac{{\sqrt 3 }}{3}.a.c{\text{os3}}{0^0} = {a^2}\frac{{\sqrt 3 }}{3}.\frac{{\sqrt 3 }}{3} = \frac{1}{2}{a^2};   \\
  \overrightarrow {GB} .\overrightarrow {GC}  = a\frac{{\sqrt 3 }}{3}.a\frac{{\sqrt 3 }}{3}.c{\text{os12}}{{\text{0}}^0} = \frac{{{a^2}}}{6};\,\,\,   \\
  \overrightarrow {BG} .\overrightarrow {GA} \, = a\frac{{\sqrt 3 }}{3}.a\frac{{\sqrt 3 }}{3}.c{\text{os6}}{{\text{0}}^0} = \frac{{{a^2}}}{6};\,   \\
  \overrightarrow {GA} .\overrightarrow {BC}  = a\frac{{\sqrt 3 }}{3}.a.c{\text{os9}}{{\text{0}}^0} = 0;\,   \\
\end{gathered} $
Bình phương vô hướng
Bình phương vô hương của một vectơ bằng bình phương độ dài của vectơ đó
3. Tính chất của tính vô hướng
Định lí
Với ba vectơ$\overrightarrow a $,$\overrightarrow b $, $\overrightarrow c $tuỳ ý và mọi  số thưc k ,ta có
1)$\overrightarrow a .\overrightarrow b  = \overrightarrow b .\overrightarrow a $            (tính chất giao hoán);
2)$\overrightarrow a .\overrightarrow b  = 0 \Leftrightarrow \overrightarrow a  \bot \overrightarrow b $
3)$(k\overrightarrow a ).\overrightarrow b  = \overrightarrow a .(k\overrightarrow b ) = k(\overrightarrow a .\overrightarrow b );$
4) $\overrightarrow a .(\overrightarrow b  + \overrightarrow c ) = \overrightarrow a .\overrightarrow b  + \overrightarrow a .\overrightarrow c $          (tính chất phân phối đối với phép cộng);
     $\overrightarrow a .(\overrightarrow b  - \overrightarrow c ) = \overrightarrow a .\overrightarrow b  - \overrightarrow a .\overrightarrow c $    (tính chất phân phối đối với phép trừ);
Bài toán 1: Cho tứ giác ABCD
a, Chứng minh rằng
$A{B^2} + C{D^2} = B{C^2} + A{D^2} + 2\overrightarrow {CA} .\overrightarrow {BD} $
b, Từ câu a), hãy chứng minh rằng: Điều kiện cần và đủ để tứ giác có hai đường thẳng chéo vuông góc là tổng bình phương các cặp cạnh đối diện bằng nhau.
Giải
 
a, Ta có
 $\begin{gathered}
  A{B^2} + C{D^2} - B{C^2} - A{D^2}   \\
   = {(\overrightarrow {CB}  - \overrightarrow {CA} )^2} + C{D^2} - C{B^2} - {(\overrightarrow {CD}  - \overrightarrow {CA} )^2}   \\
   = \,\, - 2\overrightarrow {CB} .\overrightarrow {CA} \,\, + 2\overrightarrow {CD} .\overrightarrow {CA}    \\
   = 2\overrightarrow {CA} .(\overrightarrow {CD}  - \overrightarrow {CB} ) = 2\overrightarrow {CA} .\overrightarrow {BD}    \\
\end{gathered} $
Từ đó suy ra điều phải chứng minh
b, Từ a ta có ngay
 $CA \bot BD \Leftrightarrow \overrightarrow {CA} .\overrightarrow {BD}  \Leftrightarrow A{B^2} + C{D^2} = B{C^2} + A{D^2}$
CHÚ Ý
1)Cho 2 vecto $\overrightarrow {OA} ,\overrightarrow {OB} $. Gọi B’ là hình chiếu của B trên đường thằng OA. Khi đó:
- Vecto $\overrightarrow {OB'} $gọi là hình chiếu của vecto $\overrightarrow {OB} $ trên đường thằng OA
- Công thức $\overrightarrow {OA} .\overrightarrow {OB}  = \overrightarrow {OA} .\overrightarrow {OB'} $ gọi là công thức hình chiếu
 
2)    Cho đường tròn (O;R) và điểm M cố định. Một đường thẳng thay đổi đi qua M, cắt đường tròn đó tại 2 điểm A và B.
 
Khi đó, giá trị không đổi $\overrightarrow {MA} .\overrightarrow {MB}  = {d^2} - {R^2}\,\,\,\,(d = MO)$ gọi là phương tích của điểm M đối với đường tròn (O) và kí hiệu là ${(P)_{M/(O)}}$
${(P)_{M/(O)}} = \overrightarrow {MA} .\overrightarrow {MB}  = {d^2} - {R^2}(d = MO)$
3) Khi điểm M nằm ngoài đường tròn (O), MT là tiếp tuyến của đường tròn đó ( T là tiếp điểm) thì
${(P)_{M/(O)}} = {\overrightarrow {MT} ^2} = M{T^2}$
4. Biểu thức tọa độ của tích vô hướng
Các hệ thức quan trọng
Cho hai vectơ $\overrightarrow b  = \left( {x';y'} \right)$và $\overrightarrow b  = \left( {x';y'} \right)$
1)$\overrightarrow a .\overrightarrow b  = xx' + yy'$
2) $\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} $
3) $c{\text{os}}(\overrightarrow a ,\overrightarrow b ) = \frac{{xx' + yy'}}{{\sqrt {{x^2} + {y^2}} \sqrt {{x^{'2}} + y{'^2}} }}\,\,\,\,\,(\overrightarrow a  \ne 0,\overrightarrow b  \ne 0)$
Đặc biệt:  $\overrightarrow a  \bot \overrightarrow b  \Leftrightarrow xx' + yy' = 0$
HỆ QUẢ
 Trong mặt phẳng toạ độ, khoảng cách giữa hai điểm $M({x_M};{y_M})$ và $N({x_N};{y_N})$ là
$MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{({x_N} - {x_M})}^2} + {{({y_N} - {y_M})}^2}} $

Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376