a/{SA⊥BCAB⊥BC⇒BC⊥(SAB){SA⊥CDAD⊥CD⇒CD⊥(SAD) {AC⊥BDSA⊥BD⇒BD⊥(SAC) b/{AH⊥SBAH⊥BC⇒AH⊥(SBC)⇒AH⊥SC (1){AK⊥SDAK⊥CD⇒AK⊥(SCD)⇒AK⊥SC(2)(1)(2)=> SC⊥ (AHK) mặt khác SC ⊥AI =>AH,AK,AI đồng phẳngc/ {SC⊥HKAC⊥HK⇒HK⊥(SAC) =>HK ⊥HI
a/{SA⊥BCAB⊥BC⇒BC⊥(SAB){SA⊥CDAD⊥CD⇒CD⊥(SAD) {AC⊥BDSA⊥BD⇒BD⊥(SAC) b/{AH⊥SBAH⊥BC⇒AH⊥(SBC)⇒AH⊥SC (1){AK⊥SDAK⊥CD⇒AK⊥(SCD)⇒AK⊥SC(2)(1)(2)=> SC⊥ (AHK) mặt khác SC ⊥AI =>AH,AK,AI đồng phẳngc/ {SC⊥HKAC⊥HK⇒HK⊥(SAC) =>HK ⊥HId/SAHIK=2SAIK=JK.AI với J=AI∩HKJK=14BD=a√241AS2+1AC2=1AI2⇒AI=√65a => S(AHIK)