Câu 2
$cos^2x-cos^24x-sinx.cos4x=\frac{1}{4}$
$<=>(cosx-cos4x)(cosx+cos4x)-sinx.cos4x=\frac{1}{4}$
$<=>2sin\frac{5x}{2}.cos\frac{5x}{2}.2sin\frac{3x}{2}.cos\frac{3x}{2}-\frac{1}{2}sin5x+\frac{1}{2}sin3x-\frac{1}{4}=0$
$<=>(sin5x.sin3x-\frac{1}{2}sin5x)+(\frac{1}{2}sin3x-\frac{1}{4})=0 $
$<=>sin5x(sin3x-\frac{1}{2})+\frac{1}{2}(sin3x-\frac{1}{2})=0$
$<=>(sin3x-\frac{1}{2})(sin5x-\frac{1}{2})=0$
Đơn giản rồi bạn tự giải nhé